Suppr超能文献

用于体外和体内抗巴贝虫药物功效测试的分析方法:当前的进展、展望和挑战。

Assay methods for in vitro and in vivo anti-Babesia drug efficacy testing: Current progress, outlook, and challenges.

机构信息

National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.

National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, Japan; Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.

出版信息

Vet Parasitol. 2020 Mar;279:109013. doi: 10.1016/j.vetpar.2019.109013. Epub 2019 Dec 13.

Abstract

Absence of an effective high-throughput drug-screening system for Babesia parasites is considered one of the main causes for the presence of a wide gap in the treatment of animal babesiosis when compared with other hemoprotozoan diseases, such as malaria. Recently, a simple, accurate, and automatic fluorescence assay was established for large-scale anti-Babesia (B. bovis, B. bigemina, B. divergens, B. caballi and T. equi) drug screening. Such development will facilitate anti-Babesia drug discovery, especially in the post-genomic era, which will bring new chemotherapy targets with the completion of the Babesia genome sequencing project currently in progress. In this review, we present the current progress in the various assays for in vitro and in vivo anti-Babesia drug testing, as well as the challenges, highlighting new insights into the future of anti-Babesia drug screening.

摘要

缺乏有效的高通量药物筛选系统来检测巴贝虫寄生虫,这被认为是导致动物巴贝斯虫病治疗存在巨大差距的主要原因之一,相比之下,其他血液原生动物疾病(如疟疾)的治疗方法则更加成熟。最近,建立了一种简单、准确、自动的荧光检测方法,可用于大规模的抗巴贝斯虫(牛巴贝斯虫、双芽巴贝斯虫、分歧巴贝斯虫、马巴贝斯虫和驽巴贝斯虫)药物筛选。这种方法的发展将有助于抗巴贝斯虫药物的发现,特别是在后基因组时代,随着正在进行的巴贝斯虫基因组测序项目的完成,将会带来新的化疗靶点。在本文综述中,我们介绍了目前用于体外和体内抗巴贝斯虫药物检测的各种检测方法以及所面临的挑战,强调了对未来抗巴贝斯虫药物筛选的新见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验