Suppr超能文献

用于预测分子间相互作用的关联网络中分子的学习表示

Learning Representation of Molecules in Association Network for Predicting Intermolecular Associations.

作者信息

Yi Hai-Cheng, You Zhu-Hong, Guo Zhen-Hao, Huang De-Shuang, Chan Keith C C

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2546-2554. doi: 10.1109/TCBB.2020.2973091. Epub 2021 Dec 8.

Abstract

A key aim of post-genomic biomedical research is to systematically understand molecules and their interactions in human cells. Multiple biomolecules coordinate to sustain life activities, and interactions between various biomolecules are interconnected. However, existing studies usually only focusing on associations between two or very limited types of molecules. In this study, we propose a network representation learning based computational framework MAN-SDNE to predict any intermolecular associations. More specifically, we constructed a large-scale molecular association network of multiple biomolecules in human by integrating associations among long non-coding RNA, microRNA, protein, drug, and disease, containing 6,528 molecular nodes, 9 kind of,105,546 associations. And then, the feature of each node is represented by its network proximity and attribute features. Furthermore, these features are used to train Random Forest classifier to predict intermolecular associations. MAN-SDNE achieves a remarkable performance with an AUC of 0.9552 and an AUPR of 0.9338 under five-fold cross-validation. To indicate the ability to predict specific types of interactions, a case study for predicting lncRNA-protein interactions using MAN-SDNE is also executed. Experimental results demonstrate this work offers a systematic insight for understanding the synergistic associations between molecules and complex diseases and provides a network-based computational tool to systematically explore intermolecular interactions.

摘要

后基因组生物医学研究的一个关键目标是系统地了解人类细胞中的分子及其相互作用。多种生物分子协同维持生命活动,各种生物分子之间的相互作用相互关联。然而,现有研究通常只关注两种或非常有限类型分子之间的关联。在本研究中,我们提出了一种基于网络表示学习的计算框架MAN-SDNE来预测任何分子间的关联。更具体地说,我们通过整合长链非编码RNA、微小RNA、蛋白质、药物和疾病之间的关联,构建了一个人类多种生物分子的大规模分子关联网络,包含6528个分子节点、9种、105546个关联。然后,每个节点的特征由其网络邻近性和属性特征表示。此外,这些特征用于训练随机森林分类器以预测分子间的关联。在五折交叉验证下,MAN-SDNE取得了显著的性能,AUC为0.9552,AUPR为0.9338。为了表明预测特定类型相互作用的能力,还进行了一个使用MAN-SDNE预测lncRNA-蛋白质相互作用的案例研究。实验结果表明,这项工作为理解分子与复杂疾病之间的协同关联提供了系统的见解,并提供了一种基于网络的计算工具来系统地探索分子间的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验