Suppr超能文献

GSPHI:一种通过多种生物信息预测噬菌体-宿主相互作用的新型深度学习模型。

GSPHI: A novel deep learning model for predicting phage-host interactions via multiple biological information.

作者信息

Pan Jie, You Wencai, Lu Xiaoliang, Wang Shiwei, You Zhuhong, Sun Yanmei

机构信息

Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi'an 710069, China.

School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China.

出版信息

Comput Struct Biotechnol J. 2023 Jun 16;21:3404-3413. doi: 10.1016/j.csbj.2023.06.014. eCollection 2023.

Abstract

Emerging evidence suggests that due to the misuse of antibiotics, bacteriophage (phage) therapy has been recognized as one of the most promising strategies for treating human diseases infected by antibiotic-resistant bacteria. Identification of phage-host interactions (PHIs) can help to explore the mechanisms of bacterial response to phages and provide new insights into effective therapeutic approaches. Compared to conventional wet-lab experiments, computational models for predicting PHIs can not only save time and cost, but also be more efficient and economical. In this study, we developed a deep learning predictive framework called GSPHI to identify potential phage and target bacterium pairs through DNA and protein sequence information. More specifically, GSPHI first initialized the node representations of phages and target bacterial hosts via a natural language processing algorithm. Then a graph embedding algorithm structural deep network embedding (SDNE) was utilized to extract local and global information from the interaction network, and finally, a deep neural network (DNN) was applied to accurately detect the interactions between phages and their bacterial hosts. In the drug-resistant bacteria dataset ESKAPE, GSPHI achieved a prediction accuracy of 86.65 % and AUC of 0.9208 under the 5-fold cross-validation technique, significantly better than other methods. In addition, case studies in Gram-positive and negative bacterial species demonstrated that GSPHI is competent in detecting potential Phage-host interactions. Taken together, these results indicate that GSPHI can provide reasonable candidate sensitive bacteria to phages for biological experiments. The webserver of the GSPHI predictor is freely available at http://120.77.11.78/GSPHI/.

摘要

新出现的证据表明,由于抗生素的滥用,噬菌体疗法已被认为是治疗由耐抗生素细菌感染的人类疾病最有前景的策略之一。噬菌体-宿主相互作用(PHIs)的鉴定有助于探索细菌对噬菌体的反应机制,并为有效的治疗方法提供新的见解。与传统的湿实验室实验相比,预测PHIs的计算模型不仅可以节省时间和成本,而且更高效、更经济。在本研究中,我们开发了一种名为GSPHI的深度学习预测框架,通过DNA和蛋白质序列信息来识别潜在的噬菌体和靶细菌对。更具体地说,GSPHI首先通过自然语言处理算法初始化噬菌体和靶细菌宿主的节点表示。然后利用图嵌入算法结构深度网络嵌入(SDNE)从相互作用网络中提取局部和全局信息,最后应用深度神经网络(DNN)准确检测噬菌体与其细菌宿主之间的相互作用。在耐药细菌数据集ESKAPE中,在5折交叉验证技术下,GSPHI的预测准确率达到86.65%,AUC为0.9208,显著优于其他方法。此外,在革兰氏阳性和阴性细菌物种中的案例研究表明,GSPHI能够检测潜在的噬菌体-宿主相互作用。综上所述,这些结果表明GSPHI可以为生物学实验提供合理的噬菌体敏感细菌候选物。GSPHI预测器的网络服务器可在http://120.77.11.78/GSPHI/免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d667/10314231/7499f89b41b7/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验