Suppr超能文献

基于统计独立性和结构稀疏性的影像遗传学数据的典型相关分析。

Canonical Correlation Analysis of Imaging Genetics Data Based on Statistical Independence and Structural Sparsity.

出版信息

IEEE J Biomed Health Inform. 2020 Sep;24(9):2621-2629. doi: 10.1109/JBHI.2020.2972581. Epub 2020 Feb 10.

Abstract

Current developments of neuroimaging and genetics promote an integrative and compressive study of schizophrenia. However, it is still difficult to explore how gene mutations are related to brain abnormalities due to the high dimension but low sample size of these data. Conventional approaches reduce the dimension of dataset separately and then calculate the correlation, but ignore the effects of the response variables and the structure of data. To improve the identification of risk genes and abnormal brain regions on schizophrenia, in this paper, we propose a novel method called Independence and Structural sparsity Canonical Correlation Analysis (ISCCA). ISCCA combines independent component analysis (ICA) and Canonical Correlation Analysis (CCA) to reduce the collinear effects, which also incorporate graph structure of the data into the model to improve the accuracy of feature selection. The results from simulation studies demonstrate its higher accuracy in discovering correlations compared with other competing methods. Moreover, applying ISCCA to a real imaging genetics dataset collected by Mind Clinical Imaging Consortium (MCIC), a set of distinct gene-ROI interactions are identified, which are verified to be both statistically and biologically significant.

摘要

神经影像学和遗传学的最新发展促进了精神分裂症的综合和压缩研究。然而,由于这些数据的维度高但样本量小,仍然很难探索基因突变与大脑异常之间的关系。传统方法分别降低数据集的维度,然后计算相关性,但忽略了响应变量和数据结构的影响。为了提高对精神分裂症风险基因和异常脑区的识别能力,本文提出了一种新的方法,称为独立性和结构稀疏正则相关分析(ISCCA)。ISCCA 结合独立成分分析(ICA)和正则相关分析(CCA)来减少共线性效应,同时将数据的图结构纳入模型中,以提高特征选择的准确性。模拟研究的结果表明,与其他竞争方法相比,它在发现相关性方面具有更高的准确性。此外,将 ISCCA 应用于由 Mind Clinical Imaging Consortium(MCIC)收集的真实影像遗传学数据集,确定了一组独特的基因-ROI 相互作用,这些相互作用被证明在统计学和生物学上都是有意义的。

相似文献

2
A Latent Gaussian Copula Model for Mixed Data Analysis in Brain Imaging Genetics.用于脑影像遗传学中混合数据分析的潜在高斯 Copula 模型。
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jul-Aug;18(4):1350-1360. doi: 10.1109/TCBB.2019.2950904. Epub 2021 Aug 6.
3
Joint Sparse Collaborative Regression on Imaging Genetics Study of Schizophrenia.精神分裂症影像学遗传学研究中的联合稀疏协同回归。
IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):1137-1146. doi: 10.1109/TCBB.2022.3172289. Epub 2023 Apr 3.

本文引用的文献

2
Influence Function and Robust Variant of Kernel Canonical Correlation Analysis.核典型相关分析的影响函数与稳健变体
Neurocomputing (Amst). 2018 Aug 23;304:12-29. doi: 10.1016/j.neucom.2018.04.008. Epub 2018 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验