Suppr超能文献

多主体 fMRI 数据驱动分析中多样性的作用:基于独立性和稀疏性的方法的比较,使用全局性能指标。

The role of diversity in data-driven analysis of multi-subject fMRI data: Comparison of approaches based on independence and sparsity using global performance metrics.

机构信息

Department of CSEE, University of Maryland Baltimore County, Baltimore, Maryland.

Department of EMPH, Icahn School of Medicine at Mount Sinai, New York, New York.

出版信息

Hum Brain Mapp. 2019 Feb 1;40(2):489-504. doi: 10.1002/hbm.24389. Epub 2018 Sep 21.

Abstract

Data-driven methods have been widely used in functional magnetic resonance imaging (fMRI) data analysis. They extract latent factors, generally, through the use of a simple generative model. Independent component analysis (ICA) and dictionary learning (DL) are two popular data-driven methods that are based on two different forms of diversity-statistical properties of the data-statistical independence for ICA and sparsity for DL. Despite their popularity, the comparative advantage of emphasizing one property over another in the decomposition of fMRI data is not well understood. Such a comparison is made harder due to the differences in the modeling assumptions between ICA and DL, as well as within different ICA algorithms where each algorithm exploits a different form of diversity. In this paper, we propose the use of objective global measures, such as time course frequency power ratio, network connection summary, and graph theoretical metrics, to gain insight into the role that different types of diversity have on the analysis of fMRI data. Four ICA algorithms that account for different types of diversity and one DL algorithm are studied. We apply these algorithms to real fMRI data collected from patients with schizophrenia and healthy controls. Our results suggest that no one particular method has the best performance using all metrics, implying that the optimal method will change depending on the goal of the analysis. However, we note that in none of the scenarios we test the highly popular Infomax provides the best performance, demonstrating the cost of exploiting limited form of diversity.

摘要

数据驱动方法已广泛应用于功能磁共振成像(fMRI)数据分析中。它们通常通过使用简单的生成模型来提取潜在因素。独立成分分析(ICA)和字典学习(DL)是两种基于数据统计属性的不同形式的流行数据驱动方法,分别是统计独立性(ICA)和稀疏性(DL)。尽管它们很受欢迎,但在 fMRI 数据分解中强调一种属性而不是另一种属性的比较优势尚不清楚。由于 ICA 和 DL 之间的建模假设以及不同 ICA 算法之间的差异(每个算法都利用了不同形式的多样性),使得这种比较变得更加困难。在本文中,我们提出使用客观的全局指标,如时程频率功率比、网络连接总结和图论指标,来深入了解不同类型的多样性对 fMRI 数据分析的作用。我们研究了四种考虑不同类型多样性的 ICA 算法和一种 DL 算法。我们将这些算法应用于从精神分裂症患者和健康对照者中采集的真实 fMRI 数据。我们的结果表明,没有一种特定的方法在所有指标上都具有最佳性能,这意味着最佳方法将根据分析目标的不同而变化。然而,我们注意到,在所测试的场景中,没有一种非常流行的 Infomax 算法能够提供最佳性能,这表明了利用有限形式的多样性的代价。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验