Suppr超能文献

氧化还原活性代谢物增强或解锁需氧菌中厌氧生存代谢的潜力。

The Potential for Redox-Active Metabolites To Enhance or Unlock Anaerobic Survival Metabolisms in Aerobes.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA

出版信息

J Bacteriol. 2020 May 11;202(11). doi: 10.1128/JB.00797-19.

Abstract

Classifying microorganisms as "obligate" aerobes has colloquially implied death without air, leading to the erroneous assumption that, without oxygen, they are unable to survive. However, over the past few decades, more than a few obligate aerobes have been found to possess anaerobic energy conservation strategies that sustain metabolic activity in the absence of growth or at very low growth rates. Similarly, studies emphasizing the aerobic prowess of certain facultative aerobes have sometimes led to underrecognition of their anaerobic capabilities. Yet an inescapable consequence of the affinity both obligate and facultative aerobes have for oxygen is that the metabolism of these organisms may drive this substrate to scarcity, making anoxic survival an essential skill. To illustrate this, we highlight the importance of anaerobic survival strategies for and , representative facultative and obligate aerobes, respectively. Included among these strategies, we describe a role for redox-active secondary metabolites (RAMs), such as phenazines made by , in enhancing substrate-level phosphorylation. Importantly, RAMs are made by diverse bacteria, often during stationary phase in the absence of oxygen, and can sustain anoxic survival. We present a hypothesis for how RAMs may enhance or even unlock energy conservation pathways that facilitate the anaerobic survival of both RAM producers and nonproducers.

摘要

将微生物归类为“需氧”微生物,通俗地说就是没有空气就会死亡,这导致了一个错误的假设,即在没有氧气的情况下,它们无法生存。然而,在过去的几十年中,人们发现了许多需氧微生物拥有厌氧能量保存策略,这些策略可以在没有生长或生长非常缓慢的情况下维持代谢活动。同样,强调某些兼性需氧微生物有氧能力的研究有时导致人们低估了它们的厌氧能力。然而,需氧和兼性需氧微生物对氧气的亲和力不可避免的结果是,这些生物体的代谢可能会导致这种基质变得稀缺,使缺氧生存成为一项必不可少的技能。为了说明这一点,我们强调了厌氧生存策略对于 和 的重要性,它们分别是具有代表性的兼性需氧菌和严格需氧菌。在这些策略中,我们描述了氧化还原活性次生代谢物(RAMs)的作用,例如由 产生的吩嗪,可增强底物水平磷酸化。重要的是,RAMs 是由多种细菌产生的,通常在没有氧气的静止期产生,并且可以维持缺氧生存。我们提出了一个假设,即 RAMs 如何增强甚至解锁能量保存途径,从而促进 RAM 产生菌和非产生菌的厌氧生存。

相似文献

2
The obligate aerobic actinomycete Streptomyces coelicolor A3(2) survives extended periods of anaerobic stress.
Environ Microbiol. 2007 Dec;9(12):3143-9. doi: 10.1111/j.1462-2920.2007.01433.x.
3
RNA-Seq analysis reveals a six-gene SoxR regulon in Streptomyces coelicolor.
PLoS One. 2014 Aug 27;9(8):e106181. doi: 10.1371/journal.pone.0106181. eCollection 2014.
4
Pseudomonas aeruginosa PumA acts on an endogenous phenazine to promote self-resistance.
Microbiology (Reading). 2018 May;164(5):790-800. doi: 10.1099/mic.0.000657. Epub 2018 Apr 9.
5
Redox-active antibiotics control gene expression and community behavior in divergent bacteria.
Science. 2008 Aug 29;321(5893):1203-6. doi: 10.1126/science.1160619.
6
cbb3-type cytochrome c oxidases, aerobic respiratory enzymes, impact the anaerobic life of Pseudomonas aeruginosa PAO1.
J Bacteriol. 2014 Nov;196(22):3881-9. doi: 10.1128/JB.01978-14. Epub 2014 Sep 2.
7
8
Oxygen-dependent control of respiratory nitrate reduction in mycelium of Streptomyces coelicolor A3(2).
J Bacteriol. 2014 Dec;196(23):4152-62. doi: 10.1128/JB.02202-14. Epub 2014 Sep 15.
9
An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia.
Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11479-84. doi: 10.1073/pnas.1407034111. Epub 2014 Jul 21.

引用本文的文献

1
3
Microplastics Biodegradation by Estuarine and Landfill Microbiomes.
Microb Ecol. 2024 Jun 28;87(1):88. doi: 10.1007/s00248-024-02399-8.
4
Negative regulation of biofilm formation by nitric oxide sensing proteins.
Biochem Soc Trans. 2023 Aug 31;51(4):1447-1458. doi: 10.1042/BST20220845.
6
Screening of natural phenazine producers for electroactivity in bioelectrochemical systems.
Microb Biotechnol. 2023 Mar;16(3):579-594. doi: 10.1111/1751-7915.14199. Epub 2022 Dec 26.
7
Novel prokaryotic system employing previously unknown nucleic acids-based receptors.
Microb Cell Fact. 2022 Oct 4;21(1):202. doi: 10.1186/s12934-022-01923-0.
8
Identification of Key Factors for Anoxic Survival of H111.
Int J Mol Sci. 2022 Apr 20;23(9):4560. doi: 10.3390/ijms23094560.
10
Spatially resolved analysis of Pseudomonas aeruginosa biofilm proteomes measured by laser ablation sample transfer.
PLoS One. 2021 Jul 22;16(7):e0250911. doi: 10.1371/journal.pone.0250911. eCollection 2021.

本文引用的文献

1
Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms.
Cell. 2020 Aug 20;182(4):919-932.e19. doi: 10.1016/j.cell.2020.07.006. Epub 2020 Aug 6.
2
Heat-shock proteases promote survival of during growth arrest.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4358-4367. doi: 10.1073/pnas.1912082117. Epub 2020 Feb 6.
3
Bacterial Longevity Requires Protein Synthesis and a Stringent Response.
mBio. 2019 Oct 15;10(5):e02189-19. doi: 10.1128/mBio.02189-19.
4
Anaerobic nitrate respiration in the aerobe Streptomyces coelicolor A3(2): helping maintain a proton gradient during dormancy.
Environ Microbiol Rep. 2019 Oct;11(5):645-650. doi: 10.1111/1758-2229.12781. Epub 2019 Jul 16.
5
An elusive electron shuttle from a facultative anaerobe.
Elife. 2019 Jun 24;8:e48054. doi: 10.7554/eLife.48054.
6
High Growth Potential of Long-Term Starved Deep Ocean Opportunistic Heterotrophic Bacteria.
Front Microbiol. 2019 Apr 10;10:760. doi: 10.3389/fmicb.2019.00760. eCollection 2019.
7
Where in the world do bacteria experience oxidative stress?
Environ Microbiol. 2019 Feb;21(2):521-530. doi: 10.1111/1462-2920.14445. Epub 2018 Nov 19.
9
Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa.
Mol Microbiol. 2018 Dec;110(6):995-1010. doi: 10.1111/mmi.14132. Epub 2018 Oct 23.
10
A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria.
Nature. 2018 Oct;562(7725):140-144. doi: 10.1038/s41586-018-0498-z. Epub 2018 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验