Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada.
Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada.
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4781-4791. doi: 10.1073/pnas.1912656117. Epub 2020 Feb 18.
Numerous hypotheses invoke tissue stiffness as a key parameter that regulates morphogenesis and disease progression. However, current methods are insufficient to test hypotheses that concern physical properties deep in living tissues. Here we introduce, validate, and apply a magnetic device that generates a uniform magnetic field gradient within a space that is sufficient to accommodate an organ-stage mouse embryo under live conditions. The method allows rapid, nontoxic measurement of the three-dimensional (3D) spatial distribution of viscoelastic properties within mesenchyme and epithelia. Using the device, we identify an anteriorly biased mesodermal stiffness gradient along which cells move to shape the early limb bud. The stiffness gradient corresponds to a -dependent domain of fibronectin expression, raising the possibility that durotaxis underlies cell movements. Three-dimensional stiffness mapping enables the generation of hypotheses and potentially the rigorous testing of mechanisms of development and disease.
许多假说认为组织硬度是调节形态发生和疾病进展的关键参数。然而,目前的方法不足以验证涉及活体组织深部物理特性的假说。在这里,我们介绍、验证并应用了一种磁装置,该装置在一个足以容纳活体器官期小鼠胚胎的空间内产生均匀的磁场梯度。该方法允许快速、无毒地测量间充质和上皮中粘弹性特性的三维(3D)空间分布。使用该设备,我们确定了一个从前到后的中胚层硬度梯度,细胞沿着这个梯度移动来塑造早期肢芽。这个硬度梯度与纤维连接蛋白表达的一个 - 依赖性区域相对应,这增加了趋硬性可能是细胞运动的基础。三维硬度映射能够产生假说,并有可能对发育和疾病的机制进行严格的测试。