Arasalo Ossi, Lehtonen Arttu J, Kielosto Mari, Heinonen Markus, Pokki Juho
Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland.
Department of Computer Science, Aalto University, Espoo, Finland.
Biophys J. 2025 Jan 21;124(2):351-362. doi: 10.1016/j.bpj.2024.12.010. Epub 2024 Dec 16.
Breast tumors are typically surrounded by extracellular matrix (ECM), which is heterogeneous, not just structurally but also mechanically. Conventional rheometry is inadequate for describing cell-size-level spatial differences in ECM mechanics that are evident at micrometer scales. Optical tweezers and passive microrheometry provide a microscale resolution for the purpose but are incapable of measuring ECM viscoelasticity (the liquid-like viscous and solid-like elastic characteristics) at stiffness levels as found in breast tumor biopsies. Magnetic microrheometry records data on varying microscale viscoelasticity within 3D ECM-mimicking materials up to the biopsy-relevant stiffness. However, the measurement probe-based microrheometry data has limitations in spatial resolution. Here, we present a probabilistic modeling method-providing analysis of sparse, probe-based spatial information on microscale viscoelasticity in ECM obtained from magnetic microrheometry-in two parts. First, we validate the method's applicability for analysis of a controlled stiffness difference, based on two collagen type 1 concentrations in one sample, showing a detectable stiffness gradient in the interface of the changing concentrations. Second, we used the method to quantify and visualize differences in viscoelasticity within 3D cell cultures containing breast-cancer-associated fibroblasts, and collagen type 1 (both typically present in the tumor ECM). The fibroblasts' presence stiffens the collagen material, which aligns with previous research. Importantly, we provide probabilistic quantification of related spatial heterogeneity differences in viscoelasticity recorded by magnetic microrheometry, for the first time. The fibroblasts culturing leads to an initially higher spatial heterogeneity in the collagen stiffness. In summary, this method reports on enhanced spatial mapping of viscoelasticity in breast cancer 3D cultures, with the future potential for matching of spatial viscoelasticity distribution in the 3D cultures with the one in biopsies.
乳腺肿瘤通常被细胞外基质(ECM)所包围,这种细胞外基质不仅在结构上,而且在力学性质上都是异质的。传统的流变学方法不足以描述在微米尺度上明显的细胞大小级别的细胞外基质力学空间差异。光镊和被动微流变学为此提供了微观尺度的分辨率,但无法测量乳腺肿瘤活检中发现的刚度水平下的细胞外基质粘弹性(类似液体的粘性和类似固体的弹性特征)。磁性微流变学可记录三维模拟细胞外基质材料内不同微观尺度粘弹性的数据,直至与活检相关的刚度。然而,基于测量探头的微流变学数据在空间分辨率上存在局限性。在此,我们提出一种概率建模方法,该方法分两部分对通过磁性微流变学获得的细胞外基质微观尺度粘弹性的稀疏、基于探头的空间信息进行分析。首先,我们基于一个样本中两种I型胶原蛋白浓度,验证了该方法对分析可控刚度差异的适用性,结果显示在浓度变化的界面处存在可检测到的刚度梯度。其次,我们使用该方法对含有乳腺癌相关成纤维细胞和I型胶原蛋白(两者通常存在于肿瘤细胞外基质中)的三维细胞培养物中的粘弹性差异进行量化和可视化。成纤维细胞的存在使胶原蛋白材料变硬,这与先前的研究一致。重要的是,我们首次对磁性微流变学记录的粘弹性相关空间异质性差异进行了概率量化。成纤维细胞培养导致胶原蛋白刚度最初具有更高的空间异质性。总之,该方法报告了乳腺癌三维培养物中粘弹性增强的空间映射,未来有可能将三维培养物中的空间粘弹性分布与活检中的分布相匹配。