Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom.
Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, OX1 3RE Oxford, United Kingdom.
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4724-4731. doi: 10.1073/pnas.1917726117. Epub 2020 Feb 18.
The opportunistic pathogen is a major cause of antibiotic-tolerant infections in humans. evades antibiotics in bacterial biofilms by up-regulating expression of a symbiotic filamentous inoviral prophage, Pf4. We investigated the mechanism of phage-mediated antibiotic tolerance using biochemical reconstitution combined with structural biology and high-resolution cellular imaging. We resolved electron cryomicroscopy atomic structures of Pf4 with and without its linear single-stranded DNA genome, and studied Pf4 assembly into liquid crystalline droplets using optical microscopy and electron cryotomography. By biochemically replicating conditions necessary for antibiotic protection, we found that phage liquid crystalline droplets form phase-separated occlusive compartments around rod-shaped bacteria leading to increased bacterial survival. Encapsulation by these compartments was observed even when inanimate colloidal rods were used to mimic rod-shaped bacteria, suggesting that shape and size complementarity profoundly influences the process. Filamentous inoviruses are pervasive across prokaryotes, and in particular, several Gram-negative bacterial pathogens including , and harbor these prophages. We propose that biophysical occlusion mediated by secreted filamentous molecules such as Pf4 may be a general strategy of bacterial survival in harsh environments.
机会性病原体是导致人类对抗生素产生耐药性感染的主要原因。它通过上调共生丝状入病毒噬菌体 Pf4 的表达来逃避细菌生物膜中的抗生素。我们使用生化重建结合结构生物学和高分辨率细胞成像技术研究了噬菌体介导的抗生素耐药性的机制。我们解析了 Pf4 及其线性单链 DNA 基因组的冷冻电镜原子结构,并使用光学显微镜和电子断层扫描研究了 Pf4 组装成液晶液滴的过程。通过生化复制保护抗生素所需的条件,我们发现噬菌体液晶液滴在杆状细菌周围形成了分隔的封闭隔室,从而导致细菌存活率增加。即使使用无生命的胶体棒模拟杆状细菌,也观察到了这些隔室的包裹,这表明形状和大小的互补性对这一过程有深远的影响。丝状噬菌体在原核生物中广泛存在,特别是包括 、 和 在内的几种革兰氏阴性细菌病原体都携带有这些前噬菌体。我们提出,由分泌的丝状分子(如 Pf4)介导的生物物理封闭可能是细菌在恶劣环境中生存的一般策略。