Suppr超能文献

基于 QR 分解的并行架构 SENSE 重建。

QR-decomposition based SENSE reconstruction using parallel architecture.

机构信息

Department of Electrical Engineering, COMSATS Institute of Information Technology, Islamabad, Pakistan.

Department of Electrical Engineering, COMSATS Institute of Information Technology, Islamabad, Pakistan.

出版信息

Comput Biol Med. 2018 Apr 1;95:1-12. doi: 10.1016/j.compbiomed.2018.01.013. Epub 2018 Feb 2.

Abstract

Magnetic Resonance Imaging (MRI) is a powerful medical imaging technique that provides essential clinical information about the human body. One major limitation of MRI is its long scan time. Implementation of advance MRI algorithms on a parallel architecture (to exploit inherent parallelism) has a great potential to reduce the scan time. Sensitivity Encoding (SENSE) is a Parallel Magnetic Resonance Imaging (pMRI) algorithm that utilizes receiver coil sensitivities to reconstruct MR images from the acquired under-sampled k-space data. At the heart of SENSE lies inversion of a rectangular encoding matrix. This work presents a novel implementation of GPU based SENSE algorithm, which employs QR decomposition for the inversion of the rectangular encoding matrix. For a fair comparison, the performance of the proposed GPU based SENSE reconstruction is evaluated against single and multicore CPU using openMP. Several experiments against various acceleration factors (AFs) are performed using multichannel (8, 12 and 30) phantom and in-vivo human head and cardiac datasets. Experimental results show that GPU significantly reduces the computation time of SENSE reconstruction as compared to multi-core CPU (approximately 12x speedup) and single-core CPU (approximately 53x speedup) without any degradation in the quality of the reconstructed images.

摘要

磁共振成像(MRI)是一种强大的医学成像技术,可提供有关人体的重要临床信息。MRI 的主要限制之一是其扫描时间长。在并行架构上实现高级 MRI 算法(以利用固有并行性)具有很大的潜力,可以缩短扫描时间。灵敏度编码(SENSE)是一种并行磁共振成像(pMRI)算法,它利用接收线圈灵敏度从采集的欠采样 k 空间数据中重建 MR 图像。SENSE 的核心是对矩形编码矩阵进行反演。这项工作提出了一种基于 GPU 的 SENSE 算法的新实现,该算法使用 QR 分解对矩形编码矩阵进行反演。为了进行公平比较,使用 OpenMP 对基于 GPU 的 SENSE 重建的性能与单核和多核 CPU 进行了评估。使用多通道(8、12 和 30)幻影和体内人脑和心脏数据集针对各种加速因子(AF)进行了多项实验。实验结果表明,与多核 CPU(大约 12 倍的速度提升)和单核 CPU(大约 53 倍的速度提升)相比,GPU 可显著缩短 SENSE 重建的计算时间,而重建图像的质量没有任何下降。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验