Frisch Philipp, Szilvási Tibor, Inoue Shigeyoshi
Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching bei München, Germany.
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin, 53706-1607, USA.
Chemistry. 2020 May 15;26(28):6271-6278. doi: 10.1002/chem.202000866. Epub 2020 Apr 28.
Silicon(II) cations can offer fascinating reactivity patterns due to their unique electronic structure: a lone pair of electrons, two empty p orbitals and a positive charge combined on a single silicon center. We now report the facile insertion of N-heterocyclic carbene (NHC)-stabilized silyliumylidene ions into M-Cl bonds (M=Ru, Rh), forming a series of novel chlorosilylene transition-metal complexes. Theoretical investigations revealed a reaction mechanism in which the insertion into the M-Cl bond with concomitant 1,2-migration of a silicon-bound NHC to the transition metal takes place after formation of an initial silyliumylidene transition-metal complex. The mechanism could be verified experimentally through characterization of the intermediate complexes. Furthermore, the obtained chlorosilylene complexes can be conveniently utilized as synthons to access Si-M and Si=M bonding motifs bonds through reductive dehalogenation.
由于其独特的电子结构,硅(II)阳离子可呈现出引人入胜的反应模式:单个硅中心上结合有一对孤对电子、两个空的p轨道和一个正电荷。我们现在报道了N-杂环卡宾(NHC)稳定的硅亚甲基离子能轻松插入M-Cl键(M = Ru、Rh),形成一系列新型的氯硅烯过渡金属配合物。理论研究揭示了一种反应机理,即在最初形成硅亚甲基过渡金属配合物后,会发生插入M-Cl键并伴随与硅相连的NHC向过渡金属的1,2-迁移。该机理可通过对中间体配合物的表征进行实验验证。此外,所得到的氯硅烯配合物可方便地用作合成子,通过还原脱卤来获得Si-M和Si = M键合模式的键。