Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Material Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
ACS Appl Mater Interfaces. 2020 Mar 18;12(11):13134-13139. doi: 10.1021/acsami.9b20990. Epub 2020 Mar 5.
Recent discoveries reveal that extracellular vesicles (EVs) play an important role in transmitting signals. Although this emerging transcellular pathway enables a better understanding of neural communication, the lack of techniques for effectively isolating EVs impedes their studies. Herein, we report an emergent high-throughput platform consisting of three-dimensional carbon nanotube arrays that rapidly capture different EVs based on their sizes, without any labels. More importantly, this label-free capture maintains the integrity of the EVs when they are excreted from a host cell, thus allowing comprehensive downstream analyses using conventional approaches. To study neural communication, we developed a stamping technique to construct a gradient of nanotube herringbone arrays and integrated them into a microdevice that allowed us processing of a wide range of sample volumes, microliters to milliliters, in several minutes through a syringe via manual hand pushing and without any sample preparation. This microdevice successfully captured and separated EVs excreted from glial cells into subgroups according to their sizes. During capture, this technology preserved the structural integrity and originality of the EVs that enabled us to monitor and follow internalization of EVs of different sizes by neurons and cells. As a proof of concept, our results showed that smaller EVs (∼80 nm in diameter) have a higher uptake efficiency compared to larger EVs (∼300 nm in diameter). In addition, after being internalized, small EVs could enter endoplasmic reticulum and Golgi but not the largest ones. Our platform significantly shortens sample preparation, allows the profiling of the different EVs based on their size, and facilitates the understanding of extracellular communication. Thus, it leads to early diagnostics and the development of novel therapeutics for neurological diseases.
最近的发现表明,细胞外囊泡(EVs)在信号传递中发挥着重要作用。尽管这种新兴的细胞间途径使人们能够更好地理解神经通讯,但缺乏有效分离 EVs 的技术阻碍了它们的研究。在这里,我们报告了一种新兴的高通量平台,该平台由三维碳纳米管阵列组成,可以根据其大小快速捕获不同的 EV,而无需任何标签。更重要的是,这种无标记的捕获方法在 EV 从宿主细胞中排出时保持了 EV 的完整性,从而可以使用传统方法进行全面的下游分析。为了研究神经通讯,我们开发了一种印花技术来构建纳米管人字形阵列的梯度,并将其集成到微设备中,该微设备允许我们在几分钟内通过手动推动注射器以微升至毫升的范围处理各种体积的样品,而无需任何样品制备。该微设备成功地根据大小将从神经胶质细胞中分泌的 EV 捕获并分离成亚群。在捕获过程中,该技术保留了 EV 的结构完整性和原始性,使我们能够监测和跟踪不同大小的 EV 被神经元和细胞内化。作为概念验证,我们的结果表明,与较大的 EV(直径约 300nm)相比,较小的 EV(直径约 80nm)具有更高的摄取效率。此外,内化后,小 EV 可以进入内质网和高尔基体,但最大的 EV 不能进入。我们的平台大大缩短了样品制备时间,允许根据大小对不同的 EV 进行分析,并有助于理解细胞外通讯。因此,它为神经疾病的早期诊断和新型治疗方法的开发提供了帮助。