Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington.
Am J Physiol Cell Physiol. 2020 Apr 1;318(4):C787-C796. doi: 10.1152/ajpcell.00192.2019. Epub 2020 Feb 19.
Cholecystokinin (CCK) is a gut-derived peptide that potently promotes satiety and facilitates gastric function in part by activating G protein-coupled CCK1 receptors on primary vagal afferent neurons. CCK signaling is dynamic and rapidly desensitizes, due to decreases in either receptor function and the resulting signal cascade, ion channel effectors, or both. Here we report a decay-time analytical approach using fluorescent calcium imaging that relates peak and steady-state calcium responses in dissociated vagal afferent neurons, enabling discrimination between receptor and ion channel effector functions. We found desensitization of CCK-induced activation was predictable, consistent across cells, and strongly concentration dependent. The decay-time constant (tau) was inversely proportional to CCK concentration, apparently reflecting the extent of receptor activation. To test this possibility, we directly manipulated the ion channel effector(s) with either decreased bath calcium or the broad-spectrum pore blocker ruthenium red. Conductance inhibition diminished the magnitude of the CCK responses without altering decay kinetics, confirming changes in tau reflect changes in receptor function selectively. Next, we investigated the contributions of the PKC and PKA signaling cascades on the magnitude and decay-time constants of CCK calcium responses. While inhibition of either PKC or PKA increased CCK calcium response magnitude, only general PKC inhibition significantly decreased the decay-time constant. These findings suggest that PKC alters CCK receptor signaling dynamics, while PKA alters the ion channel effector of the CCK response. This analytical approach should prove useful in understanding receptor/effector changes underlying acute desensitization of G-protein coupled signaling and provide insight into CCK receptor dynamics.
胆囊收缩素(CCK)是一种肠道来源的肽,通过激活初级迷走传入神经元上的 G 蛋白偶联 CCK1 受体,有力地促进饱腹感并促进胃功能。CCK 信号是动态的,由于受体功能和由此产生的信号级联、离子通道效应物或两者的减少,其迅速脱敏。在这里,我们使用荧光钙成像报告了一种衰减时间分析方法,该方法将分离的迷走传入神经元中的峰和稳态钙反应相关联,从而能够区分受体和离子通道效应物功能。我们发现 CCK 诱导的激活脱敏是可预测的、细胞间一致的,并且强烈依赖于浓度。衰减时间常数(tau)与 CCK 浓度成反比,显然反映了受体激活的程度。为了验证这一可能性,我们直接用降低浴钙或广谱孔阻滞剂钌红操纵离子通道效应物。电导抑制减小了 CCK 反应的幅度而不改变衰减动力学,这证实了 tau 的变化反映了受体功能的选择性变化。接下来,我们研究了 PKC 和 PKA 信号级联对 CCK 钙反应幅度和衰减时间常数的贡献。虽然抑制 PKC 或 PKA 都增加了 CCK 钙反应的幅度,但只有一般的 PKC 抑制显著降低了衰减时间常数。这些发现表明 PKC 改变了 CCK 受体信号转导的动力学,而 PKA 改变了 CCK 反应的离子通道效应物。这种分析方法应该有助于理解 G 蛋白偶联信号急性脱敏下的受体/效应器变化,并深入了解 CCK 受体动力学。