Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8507, Japan.
RIKEN Cluster for Science, Technology and Innovation Hub, Medical Sciences Innovation Hub Program, Kanagawa 230-0045, Japan.
Biomolecules. 2020 Feb 14;10(2):306. doi: 10.3390/biom10020306.
Gene network estimation is a method key to understanding a fundamental cellular system from high throughput omics data. However, the existing gene network analysis relies on having a sufficient number of samples and is required to handle a huge number of nodes and estimated edges, which remain difficult to interpret, especially in discovering the clinically relevant portions of the network. Here, we propose a novel method to extract a biomedically significant subnetwork using a Bayesian network, a type of unsupervised machine learning method that can be used as an explainable and interpretable artificial intelligence algorithm. Our method quantifies sample specific networks using our proposed (ECv) based on the estimated system, which realizes condition-specific subnetwork extraction using a limited number of samples. We applied this method to the Epithelial-Mesenchymal Transition (EMT) data set that is related to the process of metastasis and thus prognosis in cancer biology. We established our method-driven EMT network representing putative gene interactions. Furthermore, we found that the sample-specific ECv patterns of this EMT network can characterize the survival of lung cancer patients. These results show that our method unveils the explainable network differences in biological and clinical features through artificial intelligence technology.
基因网络估计是从高通量组学数据中理解基本细胞系统的一种关键方法。然而,现有的基因网络分析依赖于有足够数量的样本,并且需要处理大量的节点和估计的边缘,这仍然难以解释,特别是在发现网络中与临床相关的部分。在这里,我们提出了一种使用贝叶斯网络提取生物医学上有意义的子网的新方法,贝叶斯网络是一种无监督机器学习方法,可以作为一种可解释和可理解的人工智能算法。我们的方法使用我们提出的基于估计系统的(ECv)来量化样本特定的网络,这实现了使用有限数量的样本进行特定于条件的子网提取。我们将这种方法应用于上皮-间充质转化(EMT)数据集,该数据集与癌症生物学中的转移和预后过程有关。我们建立了代表假定基因相互作用的我们的方法驱动的 EMT 网络。此外,我们发现这个 EMT 网络的样本特定 ECv 模式可以描述肺癌患者的生存情况。这些结果表明,我们的方法通过人工智能技术揭示了生物和临床特征中可解释的网络差异。