Univ. Brest, Laboratoire d'Océanographie Physique et Spatiale (LOPS), Plouzané, France.
CICESE, Ensenada, B.C., Mexico.
Sci Rep. 2020 Feb 19;10(1):2897. doi: 10.1038/s41598-020-59800-y.
Oceanic vortices are ubiquitous in the ocean. They dominate the sub-inertial energy spectrum, and their dynamics is key for the evolution of the water column properties. The merger of two like-signed coherent vortices, which ultimately results in the formation of a larger vortex, provides an efficient mechanism for the lateral mixing of water masses in the ocean. Understanding the conditions of such interaction in the ocean is thus essential. Here, we use a merger detection algorithm to draw a global picture of this process in the ocean. We show that vortex mergers are not isolated, contrary to the hypothesis made in most earlier studies. Paradoxically, the merging distance is well reproduced by isolated vortex merger numerical simulations, but it is imperative to consider both the β-effect and the presence of neighbouring eddies to fully understand the physics of oceanic vortex merger.
海洋涡旋在海洋中无处不在。它们主导亚惯性能量谱,其动力学对于水柱特性的演变至关重要。两个同号相干涡旋的合并,最终导致更大的涡旋的形成,为海洋中水体的侧向混合提供了有效的机制。因此,了解海洋中这种相互作用的条件是至关重要的。在这里,我们使用合并检测算法来描绘海洋中这一过程的全局图景。我们表明,与大多数早期研究的假设相反,涡旋合并并不是孤立的。矛盾的是,尽管孤立涡旋合并数值模拟很好地再现了合并距离,但必须同时考虑β效应和相邻涡旋的存在,才能充分理解海洋涡旋合并的物理过程。