Suppr超能文献

利用电子病历嵌入式标准化脑电图报告开发新生儿癫痫发作预测模型:一项回顾性队列研究。

Leveraging electronic medical record-embedded standardised electroencephalogram reporting to develop neonatal seizure prediction models: a retrospective cohort study.

机构信息

Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

出版信息

Lancet Digit Health. 2023 Apr;5(4):e217-e226. doi: 10.1016/S2589-7500(23)00004-3.

Abstract

BACKGROUND

Accurate prediction of seizures can help to direct resource-intense continuous electroencephalogram (CEEG) monitoring to neonates at high risk of seizures. We aimed to use data from standardised EEG reports to generate seizure prediction models for vulnerable neonates.

METHODS

In this retrospective cohort study, we included neonates who underwent CEEG during the first 30 days of life at the Children's Hospital of Philadelphia (Philadelphia, PA, USA). The hypoxic ischaemic encephalopathy subgroup included only patients with CEEG data during the first 5 days of life, International Classification of Diseases, revision 10, codes for hypoxic ischaemic encephalopathy, and documented therapeutic hypothermia. In January, 2018, we implemented a novel CEEG reporting system within the electronic medical record (EMR) using common data elements that incorporated standardised terminology. All neonatal CEEG data from Jan 10, 2018, to Feb 15, 2022, were extracted from the EMR using age at the time of CEEG. We developed logistic regression, decision tree, and random forest models of neonatal seizure prediction using EEG features on day 1 to predict seizures on future days.

FINDINGS

We evaluated 1117 neonates, including 150 neonates with hypoxic ischaemic encephalopathy, with CEEG data reported using standardised templates between Jan 10, 2018, and Feb 15, 2022. Implementation of a consistent EEG reporting system that documents discrete and standardised EEG variables resulted in more than 95% reporting of key EEG features. Several EEG features were highly correlated, and patients could be clustered on the basis of specific features. However, no simple combination of features adequately predicted seizure risk. We therefore applied computational models to complement clinical identification of neonates at high risk of seizures. Random forest models incorporating background features performed with classification accuracies of up to 90% (95% CI 83-94) for all neonates and 97% (88-99) for neonates with hypoxic ischaemic encephalopathy; recall (sensitivity) of up to 97% (91-100) for all neonates and 100% (100-100) for neonates with hypoxic ischaemic encephalopathy; and precision (positive predictive value) of up to 92% (84-96) in the overall cohort and 97% (80-99) in neonates with hypoxic ischaemic encephalopathy.

INTERPRETATION

Using data extracted from the standardised EEG report on the first day of CEEG, we predict the presence or absence of neonatal seizures on subsequent days with classification performances of more than 90%. This information, incorporated into routine care, could guide decisions about the necessity of continuing EEG monitoring beyond the first day, thereby improving the allocation of limited CEEG resources. Additionally, this analysis shows the benefits of standardised clinical data collection, which can drive learning health system approaches to personalised CEEG use.

FUNDING

Children's Hospital of Philadelphia, the Hartwell Foundation, the National Institute of Neurological Disorders and Stroke, and the Wolfson Foundation.

摘要

背景

准确预测癫痫发作有助于将资源密集型连续脑电图(CEEG)监测指向高危癫痫发作的新生儿。我们旨在使用标准脑电图报告中的数据为易受影响的新生儿生成癫痫发作预测模型。

方法

在这项回顾性队列研究中,我们纳入了在费城儿童医院(宾夕法尼亚州费城)生命的头 30 天内接受 CEEG 的新生儿。缺氧缺血性脑病亚组仅包括在生命的头 5 天内接受 CEEG 数据、国际疾病分类、第 10 次修订版、缺氧缺血性脑病代码和有记录的治疗性低温的患者。2018 年 1 月,我们在电子病历(EMR)中使用包含标准化术语的常见数据元素实施了一种新的 CEEG 报告系统。从 2018 年 1 月 10 日到 2022 年 2 月 15 日,从 EMR 中提取年龄在 CEEG 时的所有新生儿 CEEG 数据。我们使用脑电图特征在第 1 天对新生儿癫痫发作进行了逻辑回归、决策树和随机森林模型的开发,以预测未来几天的癫痫发作。

结果

我们评估了 1117 名新生儿,其中包括 150 名患有缺氧缺血性脑病的新生儿,在 2018 年 1 月 10 日至 2022 年 2 月 15 日期间使用标准模板报告 CEEG 数据。实施记录离散和标准化脑电图变量的一致脑电图报告系统导致记录了超过 95%的关键脑电图特征。几个脑电图特征高度相关,并且可以根据特定特征对患者进行聚类。然而,没有简单的特征组合可以充分预测癫痫发作风险。因此,我们应用计算模型来补充临床识别癫痫发作风险高的新生儿。纳入背景特征的随机森林模型在所有新生儿中的分类准确率高达 90%(83-94),在缺氧缺血性脑病新生儿中的分类准确率高达 97%(88-99);在所有新生儿中的召回率(灵敏度)高达 97%(91-100),在缺氧缺血性脑病新生儿中的召回率为 100%(100-100);在整个队列中的精确度(阳性预测值)高达 92%(84-96),在缺氧缺血性脑病新生儿中的精确度为 97%(80-99)。

解释

使用从 CEEG 第一天的标准脑电图报告中提取的数据,我们可以以超过 90%的分类性能预测后续日子里新生儿是否存在癫痫发作。该信息纳入常规护理中,可以指导是否需要继续进行第一天以后的 EEG 监测,从而改善有限的 CEEG 资源的分配。此外,该分析表明了标准化临床数据收集的好处,这可以推动学习健康系统方法对个性化 CEEG 使用的应用。

资助

费城儿童医院、哈特韦尔基金会、美国国立神经病学和中风研究所和沃尔夫森基金会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6750/10065843/e3a7e3436e7f/nihms-1885234-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验