Schörner Christian, Lippitz Markus
Experimental Physics III, University of Bayreuth, Bayreuth, Germany D-95447.
Nano Lett. 2020 Mar 11;20(3):2152-2156. doi: 10.1021/acs.nanolett.0c00196. Epub 2020 Feb 24.
Plasmonic waveguides offer the unique possibility to confine light far below the diffraction limit. Past room temperature experiments focused on efficient generation of single waveguide plasmons by a quantum emitter. However, only the simultaneous interaction of the emitter with multiple plasmonic fields would lead to functionality in a plasmonic circuit. Here, we demonstrate the nonlinear optical interaction of a single molecule and propagating plasmons. An individual terrylene diimide (TDI) molecule is placed in the nanogap between two single-crystalline silver nanowires. A visible wavelength pump pulse and a red-shifted depletion pulse travel along the waveguide, leading to stimulated emission depletion (STED) in the observed fluorescence. The efficiency increases by up to a factor of 50 compared to far-field excitation. Our study thus demonstrates remote nonlinear four-wave mixing at a single molecule with propagating plasmons. It paves the way toward functional quantum plasmonic circuits and improved nonlinear single-molecule spectroscopy.
表面等离子体波导提供了将光限制在远低于衍射极限的独特可能性。过去的室温实验专注于通过量子发射器高效产生单波导等离子体激元。然而,只有发射器与多个等离子体场的同时相互作用才会导致等离子体电路具备功能。在此,我们展示了单个分子与传播的等离子体激元之间的非线性光学相互作用。将单个苝二酰亚胺(TDI)分子置于两根单晶银纳米线之间的纳米间隙中。一个可见波长的泵浦脉冲和一个红移的耗尽脉冲沿着波导传播,导致在观察到的荧光中产生受激辐射损耗(STED)。与远场激发相比,效率提高了高达50倍。我们的研究因此证明了单个分子与传播的等离子体激元之间的远程非线性四波混频。它为功能性量子等离子体电路和改进的非线性单分子光谱学铺平了道路。