School of Medical Sciences and School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.
Bioessays. 2020 Mar;42(3):e1900219. doi: 10.1002/bies.201900219.
Achieving regeneration of the central nervous system (CNS) is a major challenge for regenerative medicine. The inability of mammals to regrow a severed CNS contrasts with the amazing regenerative powers of their deuterostome kin, the echinoderms. Rapid CNS regeneration from a specialized autotomy plane in echinoderms presents a highly tractable and suitable non-model system for regenerative biology and evolution. Starfish arm autotomy triggers mass cell migration and local proliferation, facilitating rapid CNS regeneration. Many regeneration events in nature are preceded by autotomy and there are striking parallels between autotomy and regeneration in starfish and lizards. Comparison of these systems holds promise to provide insight into regeneration deficiency in higher vertebrates and to uncover evolutionarily conserved deuterostome-chordate regenerative processes. This will help identify mechanisms that may be present but inactive in higher vertebrates to address the problem of their poor regenerative capacities and the challenge to achieve CNS repair and regrowth.
实现中枢神经系统(CNS)的再生是再生医学的主要挑战。哺乳动物无法再生被切断的 CNS,这与它们的后口动物近亲棘皮动物令人惊叹的再生能力形成鲜明对比。棘皮动物在专门的自切平面上快速进行 CNS 再生,为再生生物学和进化提供了一个高度可行和合适的非模式系统。海星腕自切会触发大量细胞迁移和局部增殖,从而促进 CNS 的快速再生。自然界中的许多再生事件都以前自切为先导,而且海星和蜥蜴的自切和再生之间存在惊人的相似之处。对这些系统的比较有望深入了解高等脊椎动物的再生缺陷,并揭示进化上保守的后口动物-脊索动物再生过程。这将有助于确定在高等脊椎动物中可能存在但未激活的机制,以解决其再生能力差的问题,并应对中枢神经系统修复和再生的挑战。