Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
Department of Aeronautics, Imperial College London, London SW7 2AZ, U.K.
J Am Chem Soc. 2020 Mar 4;142(9):4367-4378. doi: 10.1021/jacs.9b13106. Epub 2020 Feb 20.
Carbon dioxide/epoxide copolymerization is an efficient way to add value to waste CO and to reduce pollution in polymer manufacturing. Using this process to make low molar mass polycarbonate polyols is a commercially relevant route to new thermosets and polyurethanes. In contrast, high molar mass polycarbonates, produced from CO, generally under-deliver in terms of properties, and one of the most widely investigated, poly(cyclohexene carbonate), is limited by its low elongation at break and high brittleness. Here, a new catalytic polymerization process is reported that selectively and efficiently yields degradable ABA-block polymers, incorporating 6-23 wt % CO. The polymers are synthesized using a new, highly active organometallic heterodinuclear Zn(II)/Mg(II) catalyst applied in a one-pot procedure together with biobased ε-decalactone, cyclohexene oxide, and carbon dioxide to make a series of poly(cyclohexene carbonate--decalactone--cyclohexene carbonate) [PCHC-PDL-PCHC]. The process is highly selective (CO selectivity >99% of theoretical value), allows for high monomer conversions (>90%), and yields polymers with predictable compositions, molar mass (from 38-71 kg mol), and forms dihydroxyl telechelic chains. These new materials improve upon the properties of poly(cyclohexene carbonate) and, specifically, they show good thermal stability ( ∼ 280 °C), high toughness (112 MJ m), and very high elongation at break (>900%). Materials properties are improved by precisely controlling both the quantity and location of carbon dioxide in the polymer chain. Preliminary studies show that polymers are stable in aqueous environments at room temperature over months, but they are rapidly degraded upon gentle heating in an acidic environment (60 °C, toluene, -toluene sulfonic acid). The process is likely generally applicable to many other lactones, lactides, anhydrides, epoxides, and heterocumulenes and sets the scene for a host of new applications for CO-derived polymers.
二氧化碳/环氧化物共聚是一种有效提高废 CO 附加值和减少聚合物制造污染的方法。使用该工艺制备低摩尔质量的聚碳酸酯多元醇是制备新型热固性塑料和聚氨酯的商业相关途径。相比之下,由 CO 制备的高摩尔质量聚碳酸酯在性能方面普遍表现不佳,其中研究最广泛的一种是聚(环己烯碳酸酯),其断裂伸长率低、脆性高。在此,报道了一种新的催化聚合工艺,该工艺可选择性、高效地生成可降解的 ABA 嵌段聚合物,其中包含 6-23wt%的 CO。该聚合物采用新型高活性有机金属双金属 Zn(II)/Mg(II)催化剂,在一锅法中与生物基 ε-己内酯、环氧环己烷和二氧化碳一起合成,得到一系列聚(环己烯碳酸酯-己内酯-环己烯碳酸酯)[PCHC-PDL-PCHC]。该工艺具有高选择性(CO 选择性>理论值的 99%),单体转化率高(>90%),可得到组成、摩尔质量(38-71kgmol)和端羟基双官能度可预测的聚合物。这些新型材料改善了聚(环己烯碳酸酯)的性能,特别是它们表现出良好的热稳定性( ∼ 280°C)、高韧性(112MJm)和非常高的断裂伸长率(>900%)。通过精确控制聚合物链中 CO 的数量和位置,可改善材料性能。初步研究表明,聚合物在室温下的水性环境中数月内稳定,但在酸性环境(60°C,甲苯,-对甲苯磺酸)中温和加热时会迅速降解。该工艺可能普遍适用于许多其他内酯、内酰胺、酸酐、环氧化物和杂环二烯,为 CO 衍生聚合物的许多新应用奠定了基础。