Rosetto Gloria, Vidal Fernando, McGuire Thomas M, Kerr Ryan W F, Williams Charlotte K
Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, U.K.
J Am Chem Soc. 2024 Mar 27;146(12):8381-8393. doi: 10.1021/jacs.3c14170. Epub 2024 Mar 14.
Using carbon dioxide (CO) to make recyclable thermoplastics could reduce greenhouse gas emissions associated with polymer manufacturing. CO/cyclic epoxide ring-opening copolymerization (ROCOP) allows for >30 wt % of the polycarbonate to derive from CO; so far, the field has largely focused on oligocarbonates. In contrast, efficient catalysts for high molar mass polycarbonates are underinvestigated, and the resulting thermoplastic structure-property relationships, processing, and recycling need to be elucidated. This work describes a new organometallic Mg(II)Co(II) catalyst that combines high productivity, low loading tolerance, and the highest polymerization control to yield polycarbonates with number average molecular weight () values from 4 to 130 kg mol, with narrow, monomodal distributions. It is used in the ROCOP of CO with bicyclic epoxides to produce a series of samples, each with > 100 kg mol, of poly(cyclohexene carbonate) (PCHC), poly(vinyl-cyclohexene carbonate) (PvCHC), poly(ethyl-cyclohexene carbonate) (PeCHC, by hydrogenation of PvCHC), and poly(cyclopentene carbonate) (PCPC). All these materials are amorphous thermoplastics, with high glass transition temperatures (85 < < 126 °C, by differential scanning calorimetry) and high thermal stability ( > 260 °C). The cyclic ring substituents mediate the materials' chain entanglements, viscosity, and glass transition temperatures. Specifically, PCPC was found to have 10× lower entanglement molecular weight () and 100× lower zero-shear viscosity compared to those of PCHC, showing potential as a future thermoplastic. All these high molecular weight polymers are fully recyclable, either by reprocessing or by using the Mg(II)Co(II) catalyst for highly selective depolymerizations to epoxides and CO. PCPC shows the fastest depolymerization rates, achieving an activity of 2500 h and >99% selectivity for cyclopentene oxide and CO.
利用二氧化碳(CO₂)制备可回收热塑性塑料能够减少与聚合物制造相关的温室气体排放。CO₂/环状环氧化物开环共聚反应(ROCOP)可使聚碳酸酯中超过30 wt%的成分源自CO₂;到目前为止,该领域主要集中在低聚碳酸酯上。相比之下,针对高摩尔质量聚碳酸酯的高效催化剂研究不足,并且所得热塑性塑料的结构-性能关系、加工和回收利用仍有待阐明。这项工作描述了一种新型有机金属Mg(II)Co(II)催化剂,它具有高生产率、低负载耐受性以及最高的聚合控制能力,能够制备数均分子量(Mn)值在4至130 kg/mol之间且分布窄、单峰的聚碳酸酯。它被用于CO₂与双环环氧化物的ROCOP反应,以制备一系列样品,每个样品的Mn > 100 kg/mol,包括聚(环己烯碳酸酯)(PCHC)、聚(乙烯基环己烯碳酸酯)(PvCHC)、聚(乙基环己烯碳酸酯)(通过PvCHC氢化得到的PeCHC)和聚(环戊烯碳酸酯)(PCPC)。所有这些材料都是无定形热塑性塑料,具有较高的玻璃化转变温度(通过差示扫描量热法测得85 < Tg < 126 °C)和高热稳定性(Td > 260 °C)。环状环取代基调节了材料的链缠结、粘度和玻璃化转变温度。具体而言,与PCHC相比,发现PCPC的缠结分子量(Me)低10倍,零剪切粘度低100倍,显示出作为未来热塑性塑料的潜力。所有这些高分子量聚合物都可以通过再加工或使用Mg(II)Co(II)催化剂进行高度选择性解聚为环氧化物和CO₂而完全回收利用。PCPC表现出最快的解聚速率,实现了2500 h⁻¹的活性以及对环戊烯氧化物和CO₂的>99%的选择性。