Cardiovascular Research Center (A.M, N.S., A.A.K., I.M., T.M. K.B., M.T.K.S., E.C., Y.S., J.G.O., P.L, A.G.-S., C.K., M.M., L.Z.), Icahn School of Medicine at Mount Sinai, New York.
Department of Genetics and Genomic Sciences (A.M, N.S., A.A.K., I.M., T.M. K.B., M.T.K.S., E.C., L.Z.), Icahn School of Medicine at Mount Sinai, New York.
Circulation. 2020 Apr 14;141(15):1249-1265. doi: 10.1161/CIRCULATIONAHA.119.043067. Epub 2020 Feb 11.
The adult mammalian heart has limited regenerative capacity, mostly attributable to postnatal cardiomyocyte cell cycle arrest. In the last 2 decades, numerous studies have explored cardiomyocyte cell cycle regulatory mechanisms to enhance myocardial regeneration after myocardial infarction. Pkm2 (Pyruvate kinase muscle isoenzyme 2) is an isoenzyme of the glycolytic enzyme pyruvate kinase. The role of Pkm2 in cardiomyocyte proliferation, heart development, and cardiac regeneration is unknown.
We investigated the effect of Pkm2 in cardiomyocytes through models of loss (cardiomyocyte-specific Pkm2 deletion during cardiac development) or gain using cardiomyocyte-specific Pkm2 modified mRNA to evaluate Pkm2 function and regenerative affects after acute or chronic myocardial infarction in mice.
Here, we identify Pkm2 as an important regulator of the cardiomyocyte cell cycle. We show that Pkm2 is expressed in cardiomyocytes during development and immediately after birth but not during adulthood. Loss of function studies show that cardiomyocyte-specific Pkm2 deletion during cardiac development resulted in significantly reduced cardiomyocyte cell cycle, cardiomyocyte numbers, and myocardial size. In addition, using cardiomyocyte-specific Pkm2 modified RNA, our novel cardiomyocyte-targeted strategy, after acute or chronic myocardial infarction, resulted in increased cardiomyocyte cell division, enhanced cardiac function, and improved long-term survival. We mechanistically show that Pkm2 regulates the cardiomyocyte cell cycle and reduces oxidative stress damage through anabolic pathways and β-catenin.
We demonstrate that Pkm2 is an important intrinsic regulator of the cardiomyocyte cell cycle and oxidative stress, and highlight its therapeutic potential using cardiomyocyte-specific Pkm2 modified RNA as a gene delivery platform.
成年哺乳动物的心脏再生能力有限,这主要归因于出生后心肌细胞周期停滞。在过去的 20 年中,许多研究探索了心肌细胞细胞周期调控机制,以增强心肌梗死后的心肌再生。Pkm2(丙酮酸激酶肌肉同工酶 2)是糖酵解酶丙酮酸激酶的同工酶。Pkm2 在心肌细胞增殖、心脏发育和心脏再生中的作用尚不清楚。
我们通过心脏发育过程中心肌细胞特异性 Pkm2 缺失或使用心肌细胞特异性 Pkm2 修饰 mRNA 的获得模型,研究 Pkm2 在心肌细胞中的作用,以评估 Pkm2 在急性或慢性心肌梗死后的功能和再生作用。
在这里,我们确定 Pkm2 是心肌细胞细胞周期的重要调节因子。我们表明,Pkm2 在发育过程中和出生后立即表达,但在成年期不表达。功能丧失研究表明,心脏发育过程中心肌细胞特异性 Pkm2 缺失导致心肌细胞周期、心肌细胞数量和心肌大小显著减少。此外,使用心肌细胞特异性 Pkm2 修饰 RNA,我们的新型心肌细胞靶向策略,在急性或慢性心肌梗死后,导致心肌细胞分裂增加、心脏功能增强和长期生存率提高。我们从机制上表明,Pkm2 通过合成代谢途径和β-catenin 调节心肌细胞细胞周期并减少氧化应激损伤。
我们证明 Pkm2 是心肌细胞细胞周期和氧化应激的重要内在调节因子,并强调使用心肌细胞特异性 Pkm2 修饰 RNA 作为基因传递平台的治疗潜力。