Suppr超能文献

优化布尔合成调控网络以控制细胞状态。

Optimising Boolean Synthetic Regulatory Networks to Control Cell States.

作者信息

Taou Nadia, Lones Michael

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2649-2658. doi: 10.1109/TCBB.2020.2973636. Epub 2021 Dec 8.

Abstract

Controlling the dynamics of gene regulatory networks is a challenging problem. In recent years, a number of control methods have been proposed, but most of these approaches do not address the problem of how they could be implemented in practice. In this paper, we consider the idea of using a synthetic regulatory network as a closed-loop controller that can control and respond to the dynamics of a cell's native regulatory network in situ. We explore this idea using a computational model in which both native and synthetic regulatory networks are represented by Boolean networks. We then use an evolutionary algorithm to optimise both the structure and parameters of the synthetic Boolean network. To test this approach, we look at whether controllers can be optimised to target specific steady states in five different Boolean regulatory circuit models. Our results show that in most cases the controllers are able to drive the dynamics of the target system to a specified steady state, often using few interventions, and further experiments using random Boolean networks show that the approach scales well to larger controlled networks.

摘要

控制基因调控网络的动态变化是一个具有挑战性的问题。近年来,人们提出了许多控制方法,但这些方法大多没有解决如何在实际中实施的问题。在本文中,我们考虑使用合成调控网络作为闭环控制器的想法,该控制器可以在原位控制细胞天然调控网络的动态变化并做出响应。我们使用一个计算模型来探索这个想法,在该模型中,天然和合成调控网络均由布尔网络表示。然后,我们使用进化算法来优化合成布尔网络的结构和参数。为了测试这种方法,我们研究了是否可以优化控制器以在五个不同的布尔调控电路模型中靶向特定的稳态。我们的结果表明,在大多数情况下,控制器能够将目标系统的动态变化驱动到指定的稳态,通常只需很少的干预,并且使用随机布尔网络进行的进一步实验表明,该方法能够很好地扩展到更大的受控网络。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验