Suppr超能文献

可扩展的布尔生物调控网络的稳态分析。

Scalable steady state analysis of Boolean biological regulatory networks.

机构信息

Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, United States of America.

出版信息

PLoS One. 2009 Dec 1;4(12):e7992. doi: 10.1371/journal.pone.0007992.

Abstract

BACKGROUND

Computing the long term behavior of regulatory and signaling networks is critical in understanding how biological functions take place in organisms. Steady states of these networks determine the activity levels of individual entities in the long run. Identifying all the steady states of these networks is difficult due to the state space explosion problem.

METHODOLOGY

In this paper, we propose a method for identifying all the steady states of Boolean regulatory and signaling networks accurately and efficiently. We build a mathematical model that allows pruning a large portion of the state space quickly without causing any false dismissals. For the remaining state space, which is typically very small compared to the whole state space, we develop a randomized traversal method that extracts the steady states. We estimate the number of steady states, and the expected behavior of individual genes and gene pairs in steady states in an online fashion. Also, we formulate a stopping criterion that terminates the traversal as soon as user supplied percentage of the results are returned with high confidence.

CONCLUSIONS

This method identifies the observed steady states of boolean biological networks computationally. Our algorithm successfully reported the G1 phases of both budding and fission yeast cell cycles. Besides, the experiments suggest that this method is useful in identifying co-expressed genes as well. By analyzing the steady state profile of Hedgehog network, we were able to find the highly co-expressed gene pair GL1-SMO together with other such pairs.

AVAILABILITY

Source code of this work is available at http://bioinformatics.cise.ufl.edu/palSteady.html twocolumnfalse].

摘要

背景

计算调控和信号网络的长期行为对于理解生物功能在生物体中如何发生至关重要。这些网络的稳态决定了个体实体在长期内的活动水平。由于状态空间爆炸问题,识别这些网络的所有稳态状态非常困难。

方法

在本文中,我们提出了一种准确有效地识别布尔调控和信号网络所有稳态的方法。我们构建了一个数学模型,允许快速修剪大部分状态空间,而不会造成任何错误的排除。对于剩余的状态空间,与整个状态空间相比通常非常小,我们开发了一种随机遍历方法来提取稳态。我们在线估计稳态的数量,以及个体基因和基因对在稳态中的预期行为。此外,我们还制定了一个停止准则,一旦以高置信度返回用户提供的结果百分比,就会终止遍历。

结论

该方法通过计算识别布尔生物网络的观察到的稳态。我们的算法成功报告了芽殖酵母和裂殖酵母细胞周期的 G1 期。此外,实验表明该方法在识别共表达基因方面也很有用。通过分析 Hedgehog 网络的稳态分布,我们能够找到高度共表达的基因对 GL1-SMO 以及其他类似的基因对。

可用性

该工作的源代码可在 http://bioinformatics.cise.ufl.edu/palSteady.html 获得[两列,假]。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d13/2779454/5322d5f1cfe4/pone.0007992.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验