Suppr超能文献

通过靶向计算揭示的隐秘口袋来抑制富含纹状体的蛋白酪氨酸磷酸酶。

Inhibition of striatal-enriched protein tyrosine phosphatase by targeting computationally revealed cryptic pockets.

作者信息

Hou Xuben, Sun Jin-Peng, Ge Lin, Liang Xiao, Li Kangshuai, Zhang Yingkai, Fang Hao

机构信息

Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Science, Shandong University, Jinan, Shandong, 250012, China; Department of Chemistry, New York University, New York, NY, 10003, United States.

Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China.

出版信息

Eur J Med Chem. 2020 Mar 15;190:112131. doi: 10.1016/j.ejmech.2020.112131. Epub 2020 Feb 11.

Abstract

Cryptic pockets, which are not apparent in crystallographic structures, provide promising alternatives to traditional binding sites for drug development. However, identifying cryptic pockets is extremely challenging and the therapeutic potential of cryptic pockets remains unclear. Here, we reported the discovery of novel inhibitors for striatal-enriched protein tyrosine phosphatase (STEP), a potential drug target for multiple neuropsychiatric disorders, based on cryptic pocket detection. By combining the use of molecular dynamics simulations and fragment-centric topographical mapping, we identified transiently open cryptic pockets and identified 12 new STEP inhibition scaffolds through structure-based virtual screening. Site-directed mutagenesis verified the binding of ST3 with the predicted cryptic pockets. Moreover, the most potent and selective inhibitors could modulate the phosphorylation of both ERK1/2 and Pyk2 in PC12 cells.

摘要

在晶体结构中不明显的隐蔽口袋为药物开发提供了有前景的传统结合位点替代方案。然而,识别隐蔽口袋极具挑战性,其治疗潜力仍不明确。在此,我们报告基于隐蔽口袋检测发现了针对富含纹状体蛋白酪氨酸磷酸酶(STEP)的新型抑制剂,STEP是多种神经精神疾病的潜在药物靶点。通过结合分子动力学模拟和以片段为中心的拓扑映射,我们识别出瞬时开放的隐蔽口袋,并通过基于结构的虚拟筛选确定了12种新的STEP抑制支架。定点诱变验证了ST3与预测的隐蔽口袋的结合。此外,最有效和选择性最强的抑制剂可调节PC12细胞中ERK1/2和Pyk2的磷酸化。

相似文献

1
Inhibition of striatal-enriched protein tyrosine phosphatase by targeting computationally revealed cryptic pockets.
Eur J Med Chem. 2020 Mar 15;190:112131. doi: 10.1016/j.ejmech.2020.112131. Epub 2020 Feb 11.
3
Allosteric Activation of Striatal-Enriched Protein Tyrosine Phosphatase (STEP, PTPN5) by a Fragment-like Molecule.
J Med Chem. 2019 Jan 10;62(1):306-316. doi: 10.1021/acs.jmedchem.8b00857. Epub 2018 Sep 12.
4
Inhibitor of the tyrosine phosphatase STEP reverses cognitive deficits in a mouse model of Alzheimer's disease.
PLoS Biol. 2014 Aug 5;12(8):e1001923. doi: 10.1371/journal.pbio.1001923. eCollection 2014 Aug.
6
Molecular mechanism of ERK dephosphorylation by striatal-enriched protein tyrosine phosphatase.
J Neurochem. 2014 Jan;128(2):315-329. doi: 10.1111/jnc.12463. Epub 2013 Oct 31.
7
Potent inhibition of protein tyrosine phosphatases by copper complexes with multi-benzimidazole derivatives.
Biometals. 2011 Dec;24(6):993-1004. doi: 10.1007/s10534-011-9460-3. Epub 2011 May 27.
8
X-ray Characterization and Structure-Based Optimization of Striatal-Enriched Protein Tyrosine Phosphatase Inhibitors.
J Med Chem. 2017 Nov 22;60(22):9299-9319. doi: 10.1021/acs.jmedchem.7b01292. Epub 2017 Nov 8.
9
Small Glycols Discover Cryptic Pockets on Proteins for Fragment-Based Approaches.
J Chem Inf Model. 2021 Mar 22;61(3):1322-1333. doi: 10.1021/acs.jcim.0c01126. Epub 2021 Feb 11.
10
Optimized allosteric inhibition of engineered protein tyrosine phosphatases with an expanded palette of biarsenical small molecules.
Bioorg Med Chem. 2018 May 15;26(9):2610-2620. doi: 10.1016/j.bmc.2018.04.026. Epub 2018 Apr 12.

引用本文的文献

1
Integrated Molecular Modeling and Machine Learning for Drug Design.
J Chem Theory Comput. 2023 Nov 14;19(21):7478-7495. doi: 10.1021/acs.jctc.3c00814. Epub 2023 Oct 26.
3
The Implication of STEP in Synaptic Plasticity and Cognitive Impairments in Alzheimer's Disease and Other Neurological Disorders.
Front Cell Dev Biol. 2021 Jun 14;9:680118. doi: 10.3389/fcell.2021.680118. eCollection 2021.

本文引用的文献

1
Exploring Cryptic Pockets Formation in Targets of Pharmaceutical Interest with SWISH.
J Chem Theory Comput. 2018 Jun 12;14(6):3321-3331. doi: 10.1021/acs.jctc.8b00263. Epub 2018 May 25.
2
Large-Scale Validation of Mixed-Solvent Simulations to Assess Hotspots at Protein-Protein Interaction Interfaces.
J Chem Inf Model. 2018 Apr 23;58(4):784-793. doi: 10.1021/acs.jcim.7b00487. Epub 2018 Apr 11.
3
Exploring the structural origins of cryptic sites on proteins.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3416-E3425. doi: 10.1073/pnas.1711490115. Epub 2018 Mar 26.
4
Molecular mechanisms of RNA polymerase II transcription elongation elucidated by kinetic network models.
Curr Opin Struct Biol. 2018 Apr;49:54-62. doi: 10.1016/j.sbi.2018.01.002. Epub 2018 Feb 3.
5
Protein structure-based drug design: from docking to molecular dynamics.
Curr Opin Struct Biol. 2018 Feb;48:93-102. doi: 10.1016/j.sbi.2017.10.010. Epub 2017 Nov 14.
6
X-ray Characterization and Structure-Based Optimization of Striatal-Enriched Protein Tyrosine Phosphatase Inhibitors.
J Med Chem. 2017 Nov 22;60(22):9299-9319. doi: 10.1021/acs.jmedchem.7b01292. Epub 2017 Nov 8.
8
Targeting Unoccupied Surfaces on Protein-Protein Interfaces.
J Am Chem Soc. 2017 Nov 8;139(44):15560-15563. doi: 10.1021/jacs.7b05960. Epub 2017 Aug 4.
9
Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases.
Chem Rev. 2018 Feb 14;118(3):1069-1091. doi: 10.1021/acs.chemrev.7b00105. Epub 2017 May 25.
10
Genomics and evolution of protein phosphatases.
Sci Signal. 2017 Apr 11;10(474):eaag1796. doi: 10.1126/scisignal.aag1796.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验