Suppr超能文献

小分子甘醇可用于基于片段的方法探索蛋白质中的隐匿口袋。

Small Glycols Discover Cryptic Pockets on Proteins for Fragment-Based Approaches.

机构信息

Department of Physics, Indian Institute of Science, Bengaluru 560012, India.

The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States.

出版信息

J Chem Inf Model. 2021 Mar 22;61(3):1322-1333. doi: 10.1021/acs.jcim.0c01126. Epub 2021 Feb 11.

Abstract

Cryptic pockets are visible in ligand-bound protein structures but are occluded in unbound structures. Utilizing these pockets in fragment-based drug-design provides an attractive option for proteins not tractable by classical binding sites. However, owing to their hidden nature, they are difficult to identify. Here, we show that small glycols find cryptic pockets on a diverse set of proteins. Initial crystallography experiments serendipitously revealed the ability of ethylene glycol, a small glycol, to identify a cryptic pocket on the W6A mutant of the RBSX protein (RBSX-W6A). Explicit-solvent molecular dynamics (MD) simulations of RBSX-W6A with the exposed state of the cryptic pocket (ethylene glycol removed) revealed closure of the pocket reiterating that the exposed state of cryptic pockets in general are unstable in the absence of ligands. Also, no change in the pocket was observed for simulations of RBSX-W6A with the occluded state of the cryptic pocket, suggesting that water molecules are not able to open the cryptic pocket. "Cryptic-pocket finding" potential of small glycols was then supported and generalized through additional crystallography experiments, explicit-cosolvent MD simulations, and protein data set construction and analysis. The cryptic pocket on RBSX-W6A was found again upon repeating the crystallography experiments with another small glycol, propylene glycol. Use of ethylene glycol as a probe molecule in cosolvent MD simulations led to the enhanced sampling of the exposed state of experimentally observed cryptic sites on a test set of two proteins (Niemann-Pick C2, Interleukin-2). Further, analyses of protein structures with validated cryptic sites showed that ethylene glycol molecules bind to sites on proteins (Bcl-xL, G-actin, myosin II, and glutamate receptor 2), which become apparent upon binding of biologically relevant ligands. Our study thus suggests potential application of the small glycols in experimental and computational fragment-based approaches to identify cryptic pockets in apparently undruggable and/or difficult targets, making these proteins amenable to drug-design strategies.

摘要

隐蔽口袋可见于配体结合的蛋白质结构中,但在未结合的结构中被掩盖。在基于片段的药物设计中利用这些口袋为那些不能通过经典结合位点进行研究的蛋白质提供了一个有吸引力的选择。然而,由于它们的隐蔽性质,它们很难被识别。在这里,我们展示了小分子二醇能够在多种蛋白质上找到隐蔽口袋。最初的结晶学实验偶然揭示了乙二醇(一种小分子二醇)能够识别 RBSX 蛋白(RBSX-W6A)W6A 突变体上的隐蔽口袋的能力。对具有隐蔽口袋暴露状态(乙二醇去除)的 RBSX-W6A 进行显式溶剂分子动力学(MD)模拟,揭示了口袋的关闭,这再次表明一般来说,在没有配体的情况下,隐蔽口袋的暴露状态是不稳定的。此外,对于具有隐蔽口袋闭塞状态的 RBSX-W6A 的模拟,没有观察到口袋的变化,这表明水分子不能打开隐蔽口袋。通过额外的结晶学实验、显式共溶剂 MD 模拟以及蛋白质数据集的构建和分析,支持并推广了小分子二醇的“隐蔽口袋发现”潜力。在另一个小分子丙二醇的结晶学实验中再次发现了 RBSX-W6A 上的隐蔽口袋。在共溶剂 MD 模拟中使用乙二醇作为探针分子,导致在两个蛋白质(尼曼-匹克 C2、白细胞介素-2)的测试集中观察到的隐蔽位点的暴露状态的增强采样。此外,对具有验证过的隐蔽位点的蛋白质结构的分析表明,乙二醇分子与蛋白质上的位点(Bcl-xL、G-肌动蛋白、肌球蛋白 II 和谷氨酸受体 2)结合,这些位点在与生物相关的配体结合时变得明显。因此,我们的研究表明,小分子二醇在实验和计算基于片段的方法中具有潜在的应用,可以识别明显不可成药和/或难以研究的目标中的隐蔽口袋,使这些蛋白质适合药物设计策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验