Suppr超能文献

eXnet:一种在野外进行情感识别的有效方法。

eXnet: An Efficient Approach for EmotionRecognition in the Wild.

机构信息

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Sensors (Basel). 2020 Feb 17;20(4):1087. doi: 10.3390/s20041087.

Abstract

Facial expression recognition has been well studied for its great importance in the areasof human-computer interaction and social sciences. With the evolution of deep learning, therehave been significant advances in this area that also surpass human-level accuracy. Althoughthese methods have achieved good accuracy, they are still suffering from two constraints (high computational power and memory), which are incredibly critical for small hardware-constrained devices. To alleviate this issue, we propose a new Convolutional Neural Network (CNN) architecture eXnet (Expression Net) based on parallel feature extraction which surpasses current methodsin accuracy and contains a much smaller number of parameters (eXnet: 4.57 million, VGG19:14.72 million), making it more efficient and lightweight for real-time systems. Several moderndata augmentation techniques are applied for generalization of eXnet; these techniques improvethe accuracy of the network by overcoming the problem of overfitting while containing the same size. We provide an extensive evaluation of our network against key methods on Facial ExpressionRecognition 2013 (FER-2013), Extended Cohn-Kanade Dataset (CK+), and Real-world Affective Faces Database (RAF-DB) benchmark datasets. We also perform ablation evaluation to show the importance of different components of our architecture. To evaluate the efficiency of eXnet on embedded systems,we  deploy it on Raspberry Pi 4B. All these evaluations show the superiority of eXnet for emotionrecognition in the wild in terms of accuracy, the number of parameters, and size on disk.

摘要

面部表情识别在人机交互和社会科学领域具有重要意义,因此受到了广泛研究。随着深度学习的发展,该领域也取得了重大进展,甚至超越了人类的准确度。尽管这些方法已经达到了较高的准确性,但它们仍然受到两个限制(高计算能力和内存)的困扰,这对于硬件资源有限的小型设备来说至关重要。为了解决这个问题,我们提出了一种新的卷积神经网络(CNN)架构 eXnet(表情网络),它基于并行特征提取,在准确性上超过了当前的方法,并且参数数量更少(eXnet:457 万,VGG19:1472 万),使其更高效、更轻量级,适用于实时系统。我们应用了几种现代的数据增强技术来推广 eXnet;这些技术通过克服过拟合问题来提高网络的准确性,同时保持相同的规模。我们在 Facial Expression Recognition 2013(FER-2013)、扩展的 Cohn-Kanade 数据集(CK+)和真实情感人脸数据库(RAF-DB)基准数据集上对我们的网络与关键方法进行了广泛的评估。我们还进行了消融评估,以展示我们架构不同组件的重要性。为了评估 eXnet 在嵌入式系统上的效率,我们将其部署在 Raspberry Pi 4B 上。所有这些评估都表明,eXnet 在准确性、参数数量和磁盘空间方面在野外情感识别方面具有优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f49d/7071079/4d03c4a124ec/sensors-20-01087-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验