Institute for Structural Biology, Drug Discovery and Development, 800 E. Leigh Street, Suite 212, Richmond, VA 23219, USA.
Department of Medicinal Chemistry, 800 E. Leigh Street, Suite 205, Richmond, VA 23298, USA.
Glycobiology. 2020 Jul 16;30(8):516-527. doi: 10.1093/glycob/cwaa015.
Heparin/heparan sulfates (H/HS) are ubiquitous biopolymers that interact with many proteins to induce a range of biological functions. Unfortunately, how these biopolymers recognize their preferred protein targets remain poorly understood. It is suggested that computational simulations offer attractive avenues but a number of challenges, e.g., difficulty of selecting a comprehensive force field, few simple tools to interpret data, among others, remain. This work addresses several such challenges so as to help ease the implementation and analysis of computational experiments. First, this work presents a rigorous comparison of two different recent force fields, CHARMM36 and GLYCAM06, for H/HS studies. Second, it introduces two new straightforward parameters, i.e., end-to-end distance and minimum volume enclosing ellipsoid, to understand the myriad conformational forms of oligosaccharides that evolve over time in water. Third, it presents an application to elucidate the number and nature of inter and intramolecular, nondirect bridging water molecules, which help stabilize unique forms of H/HS. The results show that nonspecialists can use either CHARMM36 or GLYCAM06 force fields because both gave comparable results, albeit with small differences. The comparative study shows that the HS hexasaccharide samples a range of conformations with nearly equivalent energies, which could be the reason for its recognition by different proteins. Finally, analysis of the nondirect water bridges across the dynamics trajectory shows their importance in stabilization of certain conformational forms, which may become important for protein recognition. Overall, the work aids nonspecialists employ computational studies for understanding the solution behavior of H/HS.
肝素/硫酸乙酰肝素(H/HS)是广泛存在的生物聚合物,与许多蛋白质相互作用,诱导多种生物学功能。不幸的是,这些生物聚合物如何识别其首选的蛋白质靶标仍知之甚少。有人认为计算模拟提供了有吸引力的途径,但仍存在许多挑战,例如选择全面力场的困难、解释数据的简单工具较少等。这项工作解决了其中的一些挑战,以帮助简化计算实验的实施和分析。首先,这项工作对两种不同的最新力场 CHARMM36 和 GLYCAM06 进行了严格的比较,用于 H/HS 研究。其次,它引入了两个新的简单参数,即末端到末端的距离和最小体积包络椭球,以了解在水中随时间演变的寡糖的无数构象形式。第三,它介绍了一种应用,以阐明内分子和分子间、非直接桥接水分子的数量和性质,这些水分子有助于稳定 H/HS 的独特形式。结果表明,非专业人员可以使用 CHARMM36 或 GLYCAM06 力场,因为两者都给出了类似的结果,尽管存在一些小差异。比较研究表明,HS 六糖以几乎相等能量的多种构象进行采样,这可能是其被不同蛋白质识别的原因。最后,对动力学轨迹中非直接水桥的分析表明,它们在稳定某些构象形式方面的重要性,这可能对蛋白质识别变得重要。总的来说,这项工作帮助非专业人士利用计算研究来理解 H/HS 在溶液中的行为。