Suppr超能文献

基于深度强化学习的好奇心驱动推荐策略,用于自适应学习。

Curiosity-driven recommendation strategy for adaptive learning via deep reinforcement learning.

机构信息

Department of Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong Kong.

出版信息

Br J Math Stat Psychol. 2020 Nov;73(3):522-540. doi: 10.1111/bmsp.12199. Epub 2020 Feb 21.

Abstract

The design of recommendation strategies in the adaptive learning systems focuses on utilizing currently available information to provide learners with individual-specific learning instructions. As a critical motivate for human behaviours, curiosity is essentially the drive to explore knowledge and seek information. In a psychologically inspired view, we propose a curiosity-driven recommendation policy within the reinforcement learning framework, allowing for an efficient and enjoyable personalized learning path. Specifically, a curiosity reward from a well-designed predictive model is generated to model one's familiarity with the knowledge space. Given such curiosity rewards, we apply the actor-critic method to approximate the policy directly through neural networks. Numerical analyses with a large continuous knowledge state space and concrete learning scenarios are provided to further demonstrate the efficiency of the proposed method.

摘要

自适应学习系统中的推荐策略设计侧重于利用当前可用的信息为学习者提供个性化的学习指导。好奇心是人类行为的一个关键动机,它本质上是探索知识和寻求信息的驱动力。在受心理学启发的观点下,我们在强化学习框架内提出了一种基于好奇心的推荐策略,以实现高效和愉快的个性化学习路径。具体来说,我们从精心设计的预测模型中生成好奇心奖励,以建模学习者对知识空间的熟悉程度。有了这样的好奇心奖励,我们应用演员-评论家方法通过神经网络直接逼近策略。我们提供了具有大连续知识状态空间和具体学习场景的数值分析,以进一步证明所提出方法的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验