Suppr超能文献

使用人类生成的奖励训练用于手臂运动的 Actor-Critic 强化学习控制器。

Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1892-1905. doi: 10.1109/TNSRE.2017.2700395. Epub 2017 May 2.

Abstract

Functional Electrical Stimulation (FES) employs neuroprostheses to apply electrical current to the nerves and muscles of individuals paralyzed by spinal cord injury to restore voluntary movement. Neuroprosthesis controllers calculate stimulation patterns to produce desired actions. To date, no existing controller is able to efficiently adapt its control strategy to the wide range of possible physiological arm characteristics, reaching movements, and user preferences that vary over time. Reinforcement learning (RL) is a control strategy that can incorporate human reward signals as inputs to allow human users to shape controller behavior. In this paper, ten neurologically intact human participants assigned subjective numerical rewards to train RL controllers, evaluating animations of goal-oriented reaching tasks performed using a planar musculoskeletal human arm simulation. The RL controller learning achieved using human trainers was compared with learning accomplished using human-like rewards generated by an algorithm; metrics included success at reaching the specified target; time required to reach the target; and target overshoot. Both sets of controllers learned efficiently and with minimal differences, significantly outperforming standard controllers. Reward positivity and consistency were found to be unrelated to learning success. These results suggest that human rewards can be used effectively to train RL-based FES controllers.

摘要

功能性电刺激 (FES) 使用神经假体将电流应用于因脊髓损伤而瘫痪的个体的神经和肌肉,以恢复自主运动。神经假体控制器计算刺激模式以产生所需的动作。迄今为止,没有现有的控制器能够有效地将其控制策略适应广泛的可能的生理手臂特征、到达运动和随时间变化的用户偏好。强化学习 (RL) 是一种控制策略,它可以将人类奖励信号作为输入,允许人类用户塑造控制器行为。在本文中,十位神经完整的人类参与者为 RL 控制器分配主观数值奖励,评估使用平面肌肉骨骼人体手臂模拟执行的目标导向到达任务的动画。使用人类培训师进行的 RL 控制器学习与使用算法生成的类似人类的奖励进行的学习进行了比较;指标包括达到指定目标的成功率;达到目标所需的时间;以及目标超调。两组控制器都高效地学习,并且差异很小,明显优于标准控制器。发现奖励积极性和一致性与学习成功无关。这些结果表明,人类奖励可以有效地用于训练基于 RL 的 FES 控制器。

相似文献

1
Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1892-1905. doi: 10.1109/TNSRE.2017.2700395. Epub 2017 May 2.
2
Hindsight Experience Replay Improves Reinforcement Learning for Control of a MIMO Musculoskeletal Model of the Human Arm.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:1016-1025. doi: 10.1109/TNSRE.2021.3081056. Epub 2021 Jun 8.
4
An optimized proportional-derivative controller for the human upper extremity with gravity.
J Biomech. 2015 Oct 15;48(13):3692-700. doi: 10.1016/j.jbiomech.2015.08.016. Epub 2015 Aug 29.
5
6
Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):80-90. doi: 10.1109/TNSRE.2008.2010480.
7
Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
Med Biol Eng Comput. 2021 Jan;59(1):243-256. doi: 10.1007/s11517-020-02309-3. Epub 2021 Jan 8.
8
Reinforcement Learning based Decoding Using Internal Reward for Time Delayed Task in Brain Machine Interfaces.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3351-3354. doi: 10.1109/EMBC44109.2020.9175964.
9
Robot-assisted motor training: assistance decreases exploration during reinforcement learning.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3516-20. doi: 10.1109/EMBC.2014.6944381.
10
Feedback Control of Functional Electrical Stimulation for 2-D Arm Reaching Movements.
IEEE Trans Neural Syst Rehabil Eng. 2018 Oct;26(10):2033-2043. doi: 10.1109/TNSRE.2018.2853573. Epub 2018 Jul 5.

引用本文的文献

1
Data-Driven Dynamic Motion Planning for Practical FES-Controlled Reaching Motions in Spinal Cord Injury.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:2246-2256. doi: 10.1109/TNSRE.2023.3272929. Epub 2023 May 11.
2
Improving the Learning Rate, Accuracy, and Workspace of Reinforcement Learning Controllers for a Musculoskeletal Model of the Human Arm.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:30-39. doi: 10.1109/TNSRE.2021.3135471. Epub 2022 Jan 28.
3
Hindsight Experience Replay Improves Reinforcement Learning for Control of a MIMO Musculoskeletal Model of the Human Arm.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:1016-1025. doi: 10.1109/TNSRE.2021.3081056. Epub 2021 Jun 8.
4
The Optimal Adaptive-Based Neurofuzzy Control of the 3-DOF Musculoskeletal System of Human Arm in a 2D Plane.
Appl Bionics Biomech. 2021 Apr 5;2021:5514693. doi: 10.1155/2021/5514693. eCollection 2021.
5
Sub-optimally Solving Actuator Redundancy in a Hybrid Neuroprosthetic System with a Multi-layer Neural Network Structure.
Int J Intell Robot Appl. 2019 Sep;3(3):298-313. doi: 10.1007/s41315-019-00100-8. Epub 2019 Aug 14.
6
Reinforcement Learning-Based End-to-End Parking for Automatic Parking System.
Sensors (Basel). 2019 Sep 16;19(18):3996. doi: 10.3390/s19183996.
7
Holding Static Arm Configurations With Functional Electrical Stimulation: A Case Study.
IEEE Trans Neural Syst Rehabil Eng. 2018 Oct;26(10):2044-2052. doi: 10.1109/TNSRE.2018.2866226. Epub 2018 Aug 20.

本文引用的文献

2
Examining the effectiveness of intrathecal baclofen on spasticity in individuals with chronic spinal cord injury: a systematic review.
J Spinal Cord Med. 2014 Jan;37(1):11-8. doi: 10.1179/2045772313Y.0000000102. Epub 2013 Nov 26.
4
Online human training of a myoelectric prosthesis controller via actor-critic reinforcement learning.
IEEE Int Conf Rehabil Robot. 2011;2011:5975338. doi: 10.1109/ICORR.2011.5975338.
7
Optimization and evaluation of a proportional derivative controller for planar arm movement.
J Biomech. 2010 Apr 19;43(6):1086-91. doi: 10.1016/j.jbiomech.2009.12.017. Epub 2010 Jan 25.
8
Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke.
Neurorehabil Neural Repair. 2009 Jul-Aug;23(6):559-68. doi: 10.1177/1545968308328718. Epub 2009 Feb 3.
9
Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions.
Spinal Cord. 2008 Apr;46(4):255-74. doi: 10.1038/sj.sc.3102091. Epub 2007 Sep 11.
10
Functional electrical stimulation for neuromuscular applications.
Annu Rev Biomed Eng. 2005;7:327-60. doi: 10.1146/annurev.bioeng.6.040803.140103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验