Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain (LIED), UMR 8236 CNRS, F-75013, Paris, France.
Université Paris-Saclay, Laboratoire de Mathématiques d'Orsay, CNRS, F-91405, Orsay, France.
Sci Rep. 2020 Feb 21;10(1):3131. doi: 10.1038/s41598-020-57808-y.
The success of filamentous fungi in colonizing most natural environments can be largely attributed to their ability to form an expanding interconnected network, the mycelium, or thallus, constituted by a collection of hyphal apexes in motion producing hyphae and subject to branching and fusion. In this work, we characterize the hyphal network expansion and the structure of the fungus Podospora anserina under controlled culture conditions. To this end, temporal series of pictures of the network dynamics are produced, starting from germinating ascospores and ending when the network reaches a few centimeters width, with a typical image resolution of several micrometers. The completely automated image reconstruction steps allow an easy post-processing and a quantitative analysis of the dynamics. The main features of the evolution of the hyphal network, such as the total length L of the mycelium, the number of "nodes" (or crossing points) N and the number of apexes A, can then be precisely quantified. Beyond these main features, the determination of the distribution of the intra-thallus surfaces (S) and the statistical analysis of some local measures of N, A and L give new insights on the dynamics of expanding fungal networks. Based on these results, we now aim at developing robust and versatile discrete/continuous mathematical models to further understand the key mechanisms driving the development of the fungus thallus.
丝状真菌能够成功地在大多数自然环境中定殖,这在很大程度上归因于它们形成扩展的互联网络的能力,这个网络由运动中的菌丝尖组成,菌丝尖产生菌丝,并不断分枝和融合。在这项工作中,我们在受控的培养条件下对 Podospora anserina 的菌丝网络扩展和真菌结构进行了描述。为此,我们生成了网络动态的时间序列图片,从萌发的子囊孢子开始,直到网络达到几厘米宽为止,典型的图像分辨率为几微米。完全自动化的图像重建步骤允许轻松进行后处理和对动力学进行定量分析。菌丝网络演化的主要特征,如菌丝的总长度 L、“节点”(或交叉点)N 的数量和菌丝尖 A 的数量,可以被精确地量化。除了这些主要特征外,对菌丝体内表面积(S)的分布的确定以及对 N、A 和 L 的一些局部度量的统计分析,为扩展真菌网络的动力学提供了新的见解。基于这些结果,我们现在旨在开发稳健和通用的离散/连续数学模型,以进一步了解驱动真菌菌丝体发育的关键机制。