Suppr超能文献

肺腺癌患者的生存预测:基于基因突变的预后风险模型。

Survival prediction for patients with lung adenocarcinoma: A prognostic risk model based on gene mutations.

机构信息

Department of Pathology, Tianjin Chest Hospital, Tianjin, China.

Tianjin Marvel Medical Laboratory, Tianjin Marvelbio Technology Co., Ltd, Tianjin, China.

出版信息

Cancer Biomark. 2020;27(4):525-532. doi: 10.3233/CBM-191204.

Abstract

BACKGROUND

Lung adenocarcinoma is the most common type of lung cancer, and it is one of the most aggressive and rapidly fatal tumor types.

OBJECTIVE

To identify a signature mutation genes for prognostic prediction of lung adenocarcinoma.

METHODS

Four hundred and sixty-two lung adenocarcinoma cases were screened out and downloaded from TCGA database. Mutation data of 18 targeted genes were detected by MuTect. LASSO-COX model was used to screen gene loci, and then a prognosis model was established. Afterwards, 40 clinical patients of lung adenocarcinoma were collected to verify the mutation features and the predictive function of the above prognostic model. The mutations of above 18 genes were sequenced with targeted next generation sequencing (NGS) and analyzed with GATK and MuTect.

RESULTS

TP53 (282, 32.38%), NF1 (82, 9.41%) and EGFR (80, 9.18%) were the top 3 most frequent mutation genes. A total of 7 variables were screened out after lasso-COX analysis (tumor stage, age, diagnostic type, SMARCA4, GNAS, PTCH2, TSC2). SMARCA4, GNAS and TSC2 were a gene mutation signature to predict a poor prognosis.

CONCLUSIONS

We established a prognostic model for lung adenocarcinoma, and further concluded that SMARCA4, GNAS and TSC2 were a gene signature which plays a prognostic role.

摘要

背景

肺腺癌是最常见的肺癌类型,也是最具侵袭性和快速致命的肿瘤类型之一。

目的

鉴定用于肺腺癌预后预测的标志性突变基因。

方法

从 TCGA 数据库中筛选出 462 例肺腺癌病例,并下载。使用 MuTect 检测 18 个靶向基因的突变数据。LASSO-COX 模型用于筛选基因座,然后建立预后模型。随后,收集 40 例肺腺癌临床患者验证上述预后模型的突变特征和预测功能。使用靶向下一代测序(NGS)对上述 18 个基因的突变进行测序,并使用 GATK 和 MuTect 进行分析。

结果

TP53(282,32.38%)、NF1(82,9.41%)和 EGFR(80,9.18%)是最常见的前 3 个突变基因。经过 LASSO-COX 分析共筛选出 7 个变量(肿瘤分期、年龄、诊断类型、SMARCA4、GNAS、PTCH2、TSC2)。SMARCA4、GNAS 和 TSC2 是预测不良预后的基因突变特征。

结论

我们建立了肺腺癌的预后模型,并进一步得出结论,SMARCA4、GNAS 和 TSC2 是具有预后作用的基因特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验