Suppr超能文献

一项通过机器学习策略确定肺腺癌新预后预测模型的大型队列研究。

A large cohort study identifying a novel prognosis prediction model for lung adenocarcinoma through machine learning strategies.

机构信息

Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.

出版信息

BMC Cancer. 2019 Sep 5;19(1):886. doi: 10.1186/s12885-019-6101-7.

Abstract

BACKGROUND

Predicting lung adenocarcinoma (LUAD) risk is crucial in determining further treatment strategies. Molecular biomarkers may improve risk stratification for LUAD.

METHODS

We analyzed the gene expression profiles of LUAD patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). We initially used three distinct algorithms (sigFeature, random forest, and univariate Cox regression) to evaluate each gene's prognostic relevance. Survival related genes were then fitted into the least absolute shrinkage and selection operator (LASSO) model to build a risk prediction model for LUAD. After 100,000 times of calculation and model construction, a 16-gene-based prediction model capable of classifying LUAD patients into high-risk and low-risk groups was successfully built.

RESULTS

Using a combined strategy, we initially identified 2472 significant survival-related genes. Functional enrichment analysis demonstrated these genes' relevance to tumor initiation and progression. Using the LASSO method, we successfully built a reliable risk prediction model. The risk model was validated in two external sets and an independent set. The expression of these 16 genes was highly correlated with patients' risk. High-risk group patients witnessed poorer recurrence-free survival (RFS) and overall survival (OS) compared to low-risk group patients. Moreover, stratification analysis and decision curve analysis (DCA) confirmed the independence and potential translational value of this predictive tool. We also built a nomogram comprising risk model and stage to predict OS for LUAD patients.

CONCLUSIONS

Our risk model may serve as a practical and reliable prognosis predictive tool for LUAD and could provide novel insights into the understanding of the molecular mechanism of this disease.

摘要

背景

预测肺腺癌(LUAD)风险对于确定进一步的治疗策略至关重要。分子生物标志物可能会改善 LUAD 的风险分层。

方法

我们分析了来自癌症基因组图谱(TCGA)和基因表达综合数据库(GEO)的 LUAD 患者的基因表达谱。我们最初使用三种不同的算法(sigFeature、随机森林和单变量 Cox 回归)来评估每个基因的预后相关性。然后,将与生存相关的基因拟合到最小绝对收缩和选择算子(LASSO)模型中,以构建 LUAD 的风险预测模型。经过 100,000 次计算和模型构建后,成功构建了一个基于 16 个基因的预测模型,能够将 LUAD 患者分为高风险和低风险组。

结果

使用联合策略,我们最初确定了 2472 个与生存显著相关的基因。功能富集分析表明这些基因与肿瘤发生和进展有关。使用 LASSO 方法,我们成功构建了一个可靠的风险预测模型。该风险模型在两个外部数据集和一个独立数据集得到了验证。这些 16 个基因的表达与患者的风险高度相关。与低风险组患者相比,高风险组患者的无复发生存(RFS)和总生存(OS)较差。此外,分层分析和决策曲线分析(DCA)证实了该预测工具的独立性和潜在转化价值。我们还构建了一个包含风险模型和分期的列线图,以预测 LUAD 患者的 OS。

结论

我们的风险模型可能成为 LUAD 的一种实用且可靠的预后预测工具,并为深入了解该疾病的分子机制提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c257/6729062/6b7c2d1a8d6c/12885_2019_6101_Fig6_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验