Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, 3584 EA Utrecht, the Netherlands; Regenerative Medicine Utrecht, University Medical Center, Utrecht University, 3584 CT Utrecht, the Netherlands.
Cell Stem Cell. 2020 Apr 2;26(4):503-510.e7. doi: 10.1016/j.stem.2020.01.019. Epub 2020 Feb 20.
Adenine base editing (ABE) enables enzymatic conversion from A-T into G-C base pairs. ABE holds promise for clinical application, as it does not depend on the introduction of double-strand breaks, contrary to conventional CRISPR/Cas9-mediated genome engineering. Here, we describe a cystic fibrosis (CF) intestinal organoid biobank, representing 664 patients, of which ~20% can theoretically be repaired by ABE. We apply SpCas9-ABE (PAM recognition sequence: NGG) and xCas9-ABE (PAM recognition sequence: NGN) on four selected CF organoid samples. Genetic and functional repair was obtained in all four cases, while whole-genome sequencing (WGS) of corrected lines of two patients did not detect off-target mutations. These observations exemplify the value of large, patient-derived organoid biobanks representing hereditary disease and indicate that ABE may be safely applied in human cells.
腺嘌呤碱基编辑(ABE)能够使 A-T 碱基对转化为 G-C 碱基对。ABE 有望应用于临床,因为它不依赖于双链断裂的引入,这与传统的 CRISPR/Cas9 介导的基因组工程相反。在这里,我们描述了一个囊性纤维化(CF)肠类器官生物库,代表了 664 名患者,其中约 20%的患者理论上可以通过 ABE 进行修复。我们在四个选定的 CF 类器官样本上应用了 SpCas9-ABE(PAM 识别序列:NGG)和 xCas9-ABE(PAM 识别序列:NGN)。在所有四个病例中均获得了遗传和功能修复,而对两名患者的校正系进行的全基因组测序(WGS)未检测到脱靶突变。这些观察结果例证了代表遗传性疾病的大型、患者来源的类器官生物库的价值,并表明 ABE 可以安全地应用于人类细胞。