Suppr超能文献

植物线粒体 TAT 途径对于复合物 III 的生物发生至关重要。

The Plant Mitochondrial TAT Pathway Is Essential for Complex III Biogenesis.

机构信息

Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, Planegg-Martinsried 82152, Germany.

Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover 30419, Germany.

出版信息

Curr Biol. 2020 Mar 9;30(5):840-853.e5. doi: 10.1016/j.cub.2020.01.001. Epub 2020 Feb 20.

Abstract

Twin arginine translocation (TAT) pathways have been extensively studied in bacteria and chloroplasts for their role in membrane translocation of folded proteins. However, an increasing number of organisms have been found to contain mitochondria-located TAT subunits, including plant mitochondria, which contain TAT subunits, though in an unusual arrangement with only TatB and TatC subunits. To date, no confirmed function has been attributed to mitochondrial TAT pathways in any organism. Using a truncation mutant approach, we demonstrate that the plant mitochondrial TatB (MTTATB) is required for complex III biogenesis. More specifically, MTTATB performs at a late stage in complex III biogenesis, conveying the translocation of the C terminus of the Rieske FeS subunit back across the inner membrane. This work confirms that plant mitochondria retained a functional TAT pathway for the Rieske FeS translocation, most likely from the original mitochondrial ancestor. It is hypothesized that the original mitochondria contained a bacteria-derived TAT pathway required for at least the Rieske FeS translocation. In several eukaryotic lineages, this mitochondrial TAT pathway was lost and replaced by BCS1. Interestingly, plant mitochondria appear to assemble complex III in the same subunit order as yeast and mammals but in contrast use bacteria-like assembly factors for this process.

摘要

双精氨酸转运(TAT)途径在细菌和叶绿体中被广泛研究,因为它们在折叠蛋白的膜转运中起作用。然而,越来越多的生物体被发现含有位于线粒体的 TAT 亚基,包括植物线粒体,尽管其 TAT 亚基的排列方式不同,只有 TatB 和 TatC 亚基。迄今为止,尚未在任何生物体中确定线粒体 TAT 途径的功能。通过截断突变体方法,我们证明植物线粒体 TatB(MTTATB)是复合物 III 生物发生所必需的。更具体地说,MTTATB 在复合物 III 生物发生的晚期起作用,将 Rieske FeS 亚基的 C 端重新转运穿过内膜。这项工作证实了植物线粒体保留了一个用于 Rieske FeS 转运的功能 TAT 途径,这很可能来自原始的线粒体祖先。据推测,原始的线粒体包含了一个细菌衍生的 TAT 途径,至少对 Rieske FeS 的转运是必需的。在几个真核生物谱系中,这种线粒体 TAT 途径丢失了,取而代之的是 BCS1。有趣的是,植物线粒体似乎以与酵母和哺乳动物相同的亚基顺序组装复合物 III,但在这个过程中却使用了类似细菌的组装因子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验