Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053, USA.
Protein Eng Des Sel. 2019 Dec 31;32(7):317-329. doi: 10.1093/protein/gzaa005.
Designing functional proteins that can withstand extreme heat is beneficial for industrial and protein therapeutic applications. Thus, elucidating the atomic-level determinants of thermostability is a major interest for rational protein design. To that end, we compared the structure and dynamics of a set of previously designed, thermostable proteins based on the activation domain of human procarboxypeptidase A2 (AYEwt). The mutations in these designed proteins were intended to increase hydrophobic core packing and inter-secondary-structure interactions. To evaluate whether these design strategies were successfully deployed, we performed all-atom, explicit-solvent molecular dynamics (MD) simulations of AYEwt and three designed variants at both 25 and 100°C. Our MD simulations agreed with the relative experimental stabilities of the designs based on their secondary structure content, Cα root-mean-square deviation/fluctuation, and buried-residue solvent accessible surface area. Using a contact analysis, we found that the designs stabilize inter-secondary structure interactions and buried hydrophobic surface area, as intended. Based on our analysis, we designed three additional variants to test the role of helix stabilization, core packing, and a Phe → Met mutation on thermostability. We performed the additional MD simulations and analysis on these variants, and these data supported our predictions.
设计能够耐受极端高温的功能蛋白,有益于工业和蛋白质治疗应用。因此,阐明热稳定性的原子水平决定因素是合理蛋白质设计的主要关注点。为此,我们比较了一组先前设计的热稳定蛋白的结构和动力学,这些蛋白基于人原羧肽酶 A2(AYEwt)的激活域。这些设计蛋白中的突变旨在增加疏水性核心堆积和二级结构之间的相互作用。为了评估这些设计策略是否成功实施,我们在 25°C 和 100°C 下对 AYEwt 和三个设计变体进行了全原子、显式溶剂分子动力学(MD)模拟。我们的 MD 模拟与设计的相对实验稳定性一致,这是基于它们的二级结构含量、Cα均方根偏差/波动和埋藏残基溶剂可及表面积。通过接触分析,我们发现设计确实稳定了二级结构之间的相互作用和埋藏的疏水性表面区域,正如预期的那样。基于我们的分析,我们设计了另外三个变体来测试螺旋稳定、核心堆积和 Phe→Met 突变对热稳定性的作用。我们对这些变体进行了额外的 MD 模拟和分析,这些数据支持了我们的预测。