Suppr超能文献

采用多态 λ 动力学方法进行蛋白质设计:T4 溶菌酶中准确且可扩展的突变折叠自由能。

Approaching protein design with multisite λ dynamics: Accurate and scalable mutational folding free energies in T4 lysozyme.

机构信息

Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109.

Biophysics Program, University of Michigan, Ann Arbor, Michigan, 48109.

出版信息

Protein Sci. 2018 Nov;27(11):1910-1922. doi: 10.1002/pro.3500.

Abstract

The estimation of changes in free energy upon mutation is central to the problem of protein design. Modern protein design methods have had remarkable success over a wide range of design targets, but are reaching their limits in ligand binding and enzyme design due to insufficient accuracy in mutational free energies. Alchemical free energy calculations have the potential to supplement modern design methods through more accurate molecular dynamics based prediction of free energy changes, but suffer from high computational cost. Multisite λ dynamics (MSλD) is a particularly efficient and scalable free energy method with potential to explore combinatorially large sequence spaces inaccessible with other free energy methods. This work aims to quantify the accuracy of MSλD and demonstrate its scalability. We apply MSλD to the classic problem of calculating folding free energies in T4 lysozyme, a system with a wealth of experimental measurements. Single site mutants considering 32 mutations show remarkable agreement with experiment with a Pearson correlation of 0.914 and mean unsigned error of 1.19 kcal/mol. Multisite mutants in systems with up to five concurrent mutations spanning 240 different sequences show comparable agreement with experiment. These results demonstrate the promise of MSλD in exploring large sequence spaces for protein design.

摘要

突变引起的自由能变化的估计是蛋白质设计问题的核心。现代蛋白质设计方法在广泛的设计目标上取得了显著的成功,但由于突变自由能的准确性不足,在配体结合和酶设计方面已经达到了极限。通过更准确的基于分子动力学的自由能变化预测,计算自由能可以补充现代设计方法,但存在计算成本高的问题。多位点 λ 动力学(MSλD)是一种特别高效和可扩展的自由能方法,具有探索其他自由能方法无法访问的组合大规模序列空间的潜力。这项工作旨在量化 MSλD 的准确性并证明其可扩展性。我们将 MSλD 应用于 T4 溶菌酶折叠自由能的经典问题计算,这是一个具有丰富实验测量的系统。考虑 32 个突变的单点突变与实验具有显著的一致性,Pearson 相关系数为 0.914,平均无符号误差为 1.19 kcal/mol。在多达五个并发突变的系统中,具有 240 个不同序列的多点突变与实验具有可比的一致性。这些结果表明 MSλD 在探索蛋白质设计的大序列空间方面具有广阔的前景。

相似文献

引用本文的文献

3
Core Flipping in Lead Optimization: Rank Ordering Using λ-Dynamics.先导物优化中的核心翻转:使用λ动力学进行排序
J Chem Inf Model. 2025 Jul 14;65(13):6835-6846. doi: 10.1021/acs.jcim.5c00320. Epub 2025 Jun 16.
5
Multisite λ-Dynamics for Protein-DNA Binding Affinity Prediction.用于蛋白质 - DNA 结合亲和力预测的多位点 λ 动力学
J Chem Theory Comput. 2025 Apr 8;21(7):3536-3544. doi: 10.1021/acs.jctc.4c01408. Epub 2025 Mar 24.
8
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.CHARMM 45:可访问性、功能和速度的增强。
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
9
How to Sample Dozens of Substitutions per Site with λ Dynamics.如何使用 λ 动力学对每个位点进行数十个替换进行抽样。
J Chem Theory Comput. 2024 Jul 23;20(14):6098-6110. doi: 10.1021/acs.jctc.4c00514. Epub 2024 Jul 8.

本文引用的文献

6
Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.准确建模药物发现中的支架跳跃转化。
J Chem Theory Comput. 2017 Jan 10;13(1):42-54. doi: 10.1021/acs.jctc.6b00991. Epub 2016 Dec 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验