Université Paris-Saclay, Inserm 1195, Bâtiment Gregory Pincus, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France.
Université Paris-Saclay, Inserm 1195, Bâtiment Gregory Pincus, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France.
J Control Release. 2020 May 10;321:616-628. doi: 10.1016/j.jconrel.2020.02.032. Epub 2020 Feb 19.
In 1998, the RNA interference discovery by Fire and Mello revolutionized the scientific and therapeutic world. They showed that small double-stranded RNAs, the siRNAs, were capable of selectively silencing the expression of a targeted gene by degrading its mRNA. Very quickly, it appeared that the use of this natural mechanism was an excellent way to develop new therapeutics, due to its specificity at low doses. However, one major hurdle lies in the delivery into the targeted cells, given that the different extracellular and intracellular barriers of the organism coupled with the physico-chemical characteristics of siRNA do not allow an efficient and safe administration. The development of nanotechnologies has made it possible to counteract these hurdles by vectorizing the siRNA in a vector composed of cationic lipids or polymers, or to chemically modify it by conjugation to a molecule. This has enabled the first clinical developments of siRNAs to begin very quickly after their discovery, for the treatment of various acquired or hereditary pathologies. In 2018, the first siRNA-containing drug was approved by the FDA and the EMA for the treatment of an inherited metabolic disease, the hereditary transthyretin amyloidosis. In this review, we discuss the different barriers to the siRNA after systemic administration and how vectorization or chemical modifications lead to avoid it. We describe some interesting clinical developments and finally, we present the future perspectives.
1998 年,Fire 和 Mello 发现的 RNA 干扰彻底改变了科学和治疗领域。他们表明,小双链 RNA(siRNA)能够通过降解其 mRNA 选择性地沉默靶基因的表达。很快,由于其在低剂量下的特异性,似乎利用这种天然机制是开发新疗法的绝佳方法。然而,一个主要的障碍在于递送到靶细胞中,因为生物体的不同细胞外和细胞内屏障以及 siRNA 的物理化学特性不允许有效和安全的给药。纳米技术的发展使得通过将 siRNA 矢量化为由阳离子脂质或聚合物组成的载体,或通过与分子缀合对其进行化学修饰来克服这些障碍成为可能。这使得 siRNA 的第一批临床开发在发现后很快就开始了,用于治疗各种获得性或遗传性疾病。2018 年,第一个含有 siRNA 的药物被 FDA 和 EMA 批准用于治疗遗传性代谢疾病,即遗传性转甲状腺素淀粉样变性。在这篇综述中,我们讨论了全身性给药后 siRNA 遇到的不同障碍,以及载体化或化学修饰如何避免这些障碍。我们描述了一些有趣的临床进展,最后介绍了未来的前景。