Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET, Maastricht, the Netherlands.
Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET, Maastricht, the Netherlands.
Biomaterials. 2020 May;240:119854. doi: 10.1016/j.biomaterials.2020.119854. Epub 2020 Feb 13.
Mechanosensing proteins have mainly been investigated in 2D culture platforms, while understanding their regulation in 3D enviroments is critical for tissue engineering. Among mechanosensing proteins, the actin cytoskeleton plays a key role in human mesenchymal stromal cells (hMSCs) activity, but its regulation in 3D tissue engineered scaffolds remains poorly studied. Here, we show that human mesenchymal stromal cells (hMSCs) cultured on 3D electrospun scaffolds made of a stiff material do not form actin stress fibers, contrary to hMSCs on 2D films of the same material. On 3D electrospun and additive manufactured scaffolds, hMSCs also displayed fewer focal adhesions, lower lamin A and C expression and less YAP1 nuclear localization and myosin light chain phosphorylation. Together, this strongly suggests that dimensionality prevents the build-up of cellular tension, even on stiff materials. Knock down of either lamin A and C or zyxin resulted in fewer stress fibers in the cell center. Zyxin knock down reduced lamin A and C expression, but not vice versa, showing that this signal chain starts from the outside of the cell. Lineage commitment was not affected by the lack of these important osteogenic proteins in 3D, as all cells committed to osteogenesis in bi-potential medium. Our study demonstrates that dimensionality changes the actin cytoskeleton through lamin A and C and zyxin, and highlights the difference in the regulation of lineage commitment in 3D enviroments. Together, these results can have important implications for future scaffold design for both stiff- and soft tissue engineering constructs.
机械敏感蛋白主要在 2D 培养平台上进行研究,而了解它们在 3D 环境中的调节对于组织工程至关重要。在机械敏感蛋白中,肌动蛋白细胞骨架在人间充质基质细胞(hMSCs)活性中起着关键作用,但它在 3D 组织工程支架中的调节仍研究甚少。在这里,我们表明,与人骨髓基质细胞(hMSCs)培养在 3D 静电纺丝支架由硬材料,不形成肌动蛋白应力纤维,相反,在 hMSCs 的相同材料的 2D 薄膜。在 3D 静电纺丝和增材制造支架上,hMSCs 也显示出较少的焦点粘连,较低的 lamin A 和 C 的表达和更少的 YAP1 核定位和肌球蛋白轻链磷酸化。总之,这强烈表明,维度阻止细胞张力的积累,即使在硬材料上。 lamin A 和 C 或 zyxin 的敲低导致细胞中心的应力纤维减少。 zyxin 的敲低降低了 lamin A 和 C 的表达,但反之则不然,表明该信号链从细胞的外部开始。谱系承诺不受这些重要的成骨蛋白在 3D 中的缺乏的影响,因为所有细胞都在双潜能培养基中承诺成骨。我们的研究表明,维度通过 lamin A 和 C 和 zyxin 改变肌动蛋白细胞骨架,并强调了 3D 环境中成骨细胞谱系承诺的调节差异。总之,这些结果对于未来硬组织和软组织工程构建体的支架设计具有重要意义。