Narula S S, Dalvit C, Appleby C A, Wright P E
Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, California 92037.
Eur J Biochem. 1988 Dec 15;178(2):419-35. doi: 10.1111/j.1432-1033.1988.tb14466.x.
Phase-sensitive two-dimensional NMR methods have been used to obtain extensive proton resonance assignments for the carbon monoxide complexes of lupin leghemoglobins I and II and soybean leghemoglobin a. The assigned resonances provide information on the solution conformations of the proteins, particularly in the vicinity of the heme. The structure of the CO complex of lupin leghemoglobin II in solution is compared with the X-ray crystal structure of the cyanide complex by comparison of observed and calculated ring current shifts. The structures are generally very similar but significant differences are observed for the ligand contact residues, Phe30, His63 and Val67, and for the proximal His97 ligand. Certain residues are disordered and adopt two interconverting conformations in lupin leghemoglobin II in solution. The proximal heme pocket structure is closely conserved in the lupin leghemoglobins I and II but small differences in conformation in the distal heme pocket are apparent. Larger conformational differences are observed when comparisons are made with the CO complex of soybean leghemoglobin. Altered protein-heme packing is indicated on the proximal side of the heme and some conformational differences are evident in the distal heme pocket. The small conformational differences between the three leghemoglobins probably contribute to the known differences in their O2 and CO association and dissociation kinetics. The heme pocket conformations of the three leghemoglobins are more closely related to each other than to sperm whale myoglobin. The most notable differences between the leghemoglobins and myoglobin are: (a) reduced steric crowding of the ligand binding site in the leghemoglobins, (b) different orientations of the distal histidine, and (c) small but significant differences in proximal histidine coordination geometry. These changes probably contribute to the large differences in ligand binding kinetics between the leghemoglobins and myoglobin.
相敏二维核磁共振方法已被用于获得羽扇豆豆血红蛋白I和II以及大豆豆血红蛋白a的一氧化碳复合物的大量质子共振归属。这些归属的共振提供了关于蛋白质溶液构象的信息,特别是在血红素附近。通过比较观察到的和计算出的环电流位移,将溶液中羽扇豆豆血红蛋白II的CO复合物结构与氰化物复合物的X射线晶体结构进行了比较。结构总体上非常相似,但在配体接触残基Phe30、His63和Val67以及近端His97配体处观察到显著差异。在溶液中的羽扇豆豆血红蛋白II中,某些残基无序并采用两种相互转化的构象。近端血红素口袋结构在羽扇豆豆血红蛋白I和II中紧密保守,但远端血红素口袋中的构象存在微小差异。当与大豆豆血红蛋白的CO复合物进行比较时,观察到更大的构象差异。血红素近端侧显示出蛋白质-血红素堆积的改变,并且在远端血红素口袋中一些构象差异明显。三种豆血红蛋白之间的微小构象差异可能导致了它们已知的O2和CO结合和解离动力学差异。三种豆血红蛋白的血红素口袋构象彼此之间的关系比与抹香鲸肌红蛋白的关系更密切。豆血红蛋白和肌红蛋白之间最显著的差异是:(a)豆血红蛋白中配体结合位点的空间拥挤程度降低,(b)远端组氨酸的取向不同,以及(c)近端组氨酸配位几何结构存在微小但显著的差异。这些变化可能导致了豆血红蛋白和肌红蛋白之间配体结合动力学的巨大差异。