Suppr超能文献

使用荧光细胞周期指示剂和细胞周期抑制药物检测“前进或生长”情况

Examining Go-or-Grow Using Fluorescent Cell-Cycle Indicators and Cell-Cycle-Inhibiting Drugs.

作者信息

Vittadello Sean T, McCue Scott W, Gunasingh Gency, Haass Nikolas K, Simpson Matthew J

机构信息

School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.

School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

Biophys J. 2020 Mar 24;118(6):1243-1247. doi: 10.1016/j.bpj.2020.01.036. Epub 2020 Feb 5.

Abstract

The go-or-grow hypothesis states that adherent cells undergo reversible phenotype switching between migratory and proliferative states, with cells in the migratory state being more motile than cells in the proliferative state. Here, we examine go-or-grow in two-dimensional in vitro assays using melanoma cells with fluorescent cell-cycle indicators and cell-cycle-inhibiting drugs. We analyze the experimental data using single-cell tracking to calculate mean diffusivities and compare motility between cells in different cell-cycle phases and in cell-cycle arrest. Unequivocally, our analysis does not support the go-or-grow hypothesis. We present clear evidence that cell motility is independent of the cell-cycle phase and that nonproliferative arrested cells have the same motility as cycling cells.

摘要

“去或留”假说指出,贴壁细胞在迁移状态和增殖状态之间经历可逆的表型转换,处于迁移状态的细胞比处于增殖状态的细胞更具运动性。在此,我们使用带有荧光细胞周期指示剂和细胞周期抑制药物的黑色素瘤细胞,在二维体外试验中研究“去或留”现象。我们使用单细胞追踪分析实验数据,以计算平均扩散系数,并比较不同细胞周期阶段和细胞周期停滞状态下细胞的运动性。毫无疑问,我们的分析不支持“去或留”假说。我们提供了明确的证据,表明细胞运动性与细胞周期阶段无关,并且非增殖性停滞细胞与循环细胞具有相同的运动性。

相似文献

1
Examining Go-or-Grow Using Fluorescent Cell-Cycle Indicators and Cell-Cycle-Inhibiting Drugs.
Biophys J. 2020 Mar 24;118(6):1243-1247. doi: 10.1016/j.bpj.2020.01.036. Epub 2020 Feb 5.
4
Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse.
J Neurosci. 1993 Feb;13(2):820-33. doi: 10.1523/JNEUROSCI.13-02-00820.1993.
5
Testing the "Go or Grow" hypothesis in human medulloblastoma cell lines in two and three dimensions.
Neurosurgery. 2003 Jul;53(1):174-84; discussion 184-5. doi: 10.1227/01.neu.0000072442.26349.14.
6
Cell migration or cytokinesis and proliferation?--revisiting the "go or grow" hypothesis in cancer cells in vitro.
Exp Cell Res. 2013 Dec 10;319(20):3094-103. doi: 10.1016/j.yexcr.2013.08.018. Epub 2013 Aug 22.
9
FUCCItrack: An all-in-one software for single cell tracking and cell cycle analysis.
PLoS One. 2022 Jul 6;17(7):e0268297. doi: 10.1371/journal.pone.0268297. eCollection 2022.

引用本文的文献

1
Electrotaxis disrupts patterns of cell-cell interactions of human corneal epithelial cells in vitro.
Biophys J. 2025 Apr 15;124(8):1245-1254. doi: 10.1016/j.bpj.2025.03.004. Epub 2025 Mar 11.
2
Global regulators enable bacterial adaptation to a phenotypic trade-off.
iScience. 2024 Dec 9;28(1):111521. doi: 10.1016/j.isci.2024.111521. eCollection 2025 Jan 17.
4
Cell Migration-Proliferation Dichotomy in Cancer: Biological Fact or Experimental Artefact?
Biology (Basel). 2024 Sep 24;13(10):753. doi: 10.3390/biology13100753.
5
Cellular Energy Cycle Mediates an Advection-Like Forward Cell Flow to Support Collective Invasion.
Adv Sci (Weinh). 2024 Aug;11(32):e2400719. doi: 10.1002/advs.202400719. Epub 2024 Jun 21.
6
Quantifying cell cycle regulation by tissue crowding.
Biophys J. 2025 Mar 18;124(6):923-932. doi: 10.1016/j.bpj.2024.05.003. Epub 2024 May 7.
7
Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell.
Differentiation. 2024 May-Jun;137:100765. doi: 10.1016/j.diff.2024.100765. Epub 2024 Mar 11.
8
Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell.
bioRxiv. 2024 Feb 7:2023.03.16.533034. doi: 10.1101/2023.03.16.533034.
9
Modelling microtube driven invasion of glioma.
J Math Biol. 2023 Nov 28;88(1):4. doi: 10.1007/s00285-023-02025-0.
10
Glioblastoma cell invasion: Go? Grow? Yes.
Neuro Oncol. 2023 Dec 8;25(12):2163-2164. doi: 10.1093/neuonc/noad178.

本文引用的文献

1
Mathematical models incorporating a multi-stage cell cycle replicate normally-hidden inherent synchronization in cell proliferation.
J R Soc Interface. 2019 Aug 30;16(157):20190382. doi: 10.1098/rsif.2019.0382. Epub 2019 Aug 21.
2
Energetic regulation of coordinated leader-follower dynamics during collective invasion of breast cancer cells.
Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7867-7872. doi: 10.1073/pnas.1809964116. Epub 2019 Mar 28.
3
Microenvironment-Driven Dynamic Heterogeneity and Phenotypic Plasticity as a Mechanism of Melanoma Therapy Resistance.
Front Oncol. 2018 May 24;8:173. doi: 10.3389/fonc.2018.00173. eCollection 2018.
4
Constricted migration increases DNA damage and independently represses cell cycle.
Mol Biol Cell. 2018 Aug 8;29(16):1948-1962. doi: 10.1091/mbc.E18-02-0079. Epub 2018 May 9.
5
Mathematical Models for Cell Migration with Real-Time Cell Cycle Dynamics.
Biophys J. 2018 Mar 13;114(5):1241-1253. doi: 10.1016/j.bpj.2017.12.041.
6
Intratumor and Intertumor Heterogeneity in Melanoma.
Transl Oncol. 2017 Dec;10(6):956-975. doi: 10.1016/j.tranon.2017.09.007. Epub 2017 Oct 24.
7
Cell Cycle-Dependent Tumor Engraftment and Migration Are Enabled by Aurora-A.
Mol Cancer Res. 2018 Jan;16(1):16-31. doi: 10.1158/1541-7786.MCR-17-0417. Epub 2017 Oct 9.
8
Cell cycle-tailored targeting of metastatic melanoma: Challenges and opportunities.
Exp Dermatol. 2017 Jul;26(7):649-655. doi: 10.1111/exd.13303. Epub 2017 Apr 20.
9
Comparison between fibroblast wound healing and cell random migration assays in vitro.
Exp Cell Res. 2016 Sep 10;347(1):123-132. doi: 10.1016/j.yexcr.2016.07.015. Epub 2016 Jul 27.
10
Modeling Melanoma In Vitro and In Vivo.
Healthcare (Basel). 2013 Dec 23;2(1):27-46. doi: 10.3390/healthcare2010027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验