Suppr超能文献

估计具有较低阶依赖关系的 Y 单倍型频率。

Estimation of Y haplotype frequencies with lower order dependencies.

机构信息

Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, DK-9220 Aalborg East, Denmark; Section of Forensic Genetics, Department of Forensic Medicine, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark.

Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Brunswiker Strasse 10, 24105 Kiel, Germany.

出版信息

Forensic Sci Int Genet. 2020 May;46:102214. doi: 10.1016/j.fsigen.2019.102214. Epub 2019 Dec 24.

Abstract

Estimating Y haplotype population frequencies is a demanding task in forensic genetics. Despite the suggestion of various methods, none these have yet reached a level of accuracy and precision that is acceptable to the forensic genetics community. At the basis of this problem is the complex dependency structure between the involved STR loci. Here, we approximate this structure by the use of specific graphical models, namely t-cherry junction trees. We apply trees of order three by which dependencies between three STR loci can be taken into account, thereby extending the Chow-Liu method which is restricted to pairwise dependencies. We show that the t-cherry tree method outperforms the Chow-Liu method as well as the well-established discrete Laplace method in estimation accuracy.

摘要

估算 Y 单倍型群体频率是法医学中一项具有挑战性的任务。尽管提出了各种方法,但没有一种方法达到法医学界可接受的准确度和精密度水平。造成这个问题的根本原因是涉及的 STR 位点之间复杂的依赖结构。在这里,我们使用特定的图形模型,即 t-樱桃结树,来近似这种结构。我们应用三阶树,其中可以考虑三个 STR 位点之间的依赖性,从而扩展了仅限于成对依赖性的 Chow-Liu 方法。我们表明,t-樱桃树方法在估计准确性方面优于 Chow-Liu 方法和成熟的离散拉普拉斯方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验