Suppr超能文献

层次和级别:分析网络以研究分子生物学中的机制。

Hierarchy and levels: analysing networks to study mechanisms in molecular biology.

机构信息

Department of Philosophy, University of California San Diego, La Jolla, CA, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190320. doi: 10.1098/rstb.2019.0320. Epub 2020 Feb 24.

Abstract

Network representations are flat while mechanisms are organized into a hierarchy of levels, suggesting that the two are fundamentally opposed. I challenge this opposition by focusing on two aspects of the ways in which large-scale networks constructed from high-throughput data are analysed in systems biology: identifying clusters of nodes that operate as modules or mechanisms and using bio-ontologies such as gene ontology (GO) to annotate nodes with information about where entities appear in cells and the biological functions in which they participate. Of particular importance, GO organizes biological knowledge about cell components and functions hierarchically. I illustrate how this supports mechanistic interpretation of networks with two examples of network studies, one using epistatic interactions among genes to identify mechanisms and their parts and the other using deep learning to predict phenotypes. As illustrated in these examples, when network research draws upon hierarchical information such as provided by GO, the results not only can be interpreted mechanistically but provide new mechanistic knowledge. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'.

摘要

网络表示形式是平面的,而机制则组织成一个层次结构的层次,这表明两者在根本上是对立的。我通过关注系统生物学中从高通量数据构建的大规模网络的两种分析方式来挑战这种对立:识别作为模块或机制运作的节点簇,并使用基因本体论(GO)等生物本体来注释节点,以获取有关实体在细胞中出现的位置以及它们参与的生物学功能的信息。特别重要的是,GO 按照层次结构组织有关细胞成分和功能的生物学知识。我通过两个网络研究的例子来说明这一点,一个例子是使用基因之间的上位相互作用来识别机制及其部分,另一个例子是使用深度学习来预测表型。正如这两个例子所说明的,当网络研究利用 GO 等层次信息时,结果不仅可以从机制上进行解释,而且还可以提供新的机制知识。本文是主题为“统一生物网络的基本概念:生物学见解和哲学基础”的一部分。

相似文献

1
Hierarchy and levels: analysing networks to study mechanisms in molecular biology.层次和级别:分析网络以研究分子生物学中的机制。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190320. doi: 10.1098/rstb.2019.0320. Epub 2020 Feb 24.
4
Functional annotation of hierarchical modularity.层次模块化的功能注释。
PLoS One. 2012;7(4):e33744. doi: 10.1371/journal.pone.0033744. Epub 2012 Apr 4.
7
Modular epistasis in yeast metabolism.酵母代谢中的模块化上位性
Nat Genet. 2005 Jan;37(1):77-83. doi: 10.1038/ng1489. Epub 2004 Dec 12.
8
Network architectures supporting learnability.支持可学习性的网络架构。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190323. doi: 10.1098/rstb.2019.0323. Epub 2020 Feb 24.
9
'Hierarchy' in the organization of brain networks.大脑网络组织中的“层级”。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190319. doi: 10.1098/rstb.2019.0319. Epub 2020 Feb 24.
10
Exploring modularity in biological networks.探索生物网络的模块性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190316. doi: 10.1098/rstb.2019.0316. Epub 2020 Feb 24.

本文引用的文献

1
Exploring modularity in biological networks.探索生物网络的模块性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190316. doi: 10.1098/rstb.2019.0316. Epub 2020 Feb 24.
2
General theory of topological explanations and explanatory asymmetry.拓扑解释的一般理论与解释的不对称性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190321. doi: 10.1098/rstb.2019.0321. Epub 2020 Feb 24.
5
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
6
Inferring gene ontologies from pairwise similarity data.从成对相似性数据推断基因本体论。
Bioinformatics. 2014 Jun 15;30(12):i34-42. doi: 10.1093/bioinformatics/btu282.
9
The genetic landscape of a cell.细胞的基因图谱。
Science. 2010 Jan 22;327(5964):425-31. doi: 10.1126/science.1180823.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验