Department of Philosophy, University of California San Diego, La Jolla, CA, USA.
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190320. doi: 10.1098/rstb.2019.0320. Epub 2020 Feb 24.
Network representations are flat while mechanisms are organized into a hierarchy of levels, suggesting that the two are fundamentally opposed. I challenge this opposition by focusing on two aspects of the ways in which large-scale networks constructed from high-throughput data are analysed in systems biology: identifying clusters of nodes that operate as modules or mechanisms and using bio-ontologies such as gene ontology (GO) to annotate nodes with information about where entities appear in cells and the biological functions in which they participate. Of particular importance, GO organizes biological knowledge about cell components and functions hierarchically. I illustrate how this supports mechanistic interpretation of networks with two examples of network studies, one using epistatic interactions among genes to identify mechanisms and their parts and the other using deep learning to predict phenotypes. As illustrated in these examples, when network research draws upon hierarchical information such as provided by GO, the results not only can be interpreted mechanistically but provide new mechanistic knowledge. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'.
网络表示形式是平面的,而机制则组织成一个层次结构的层次,这表明两者在根本上是对立的。我通过关注系统生物学中从高通量数据构建的大规模网络的两种分析方式来挑战这种对立:识别作为模块或机制运作的节点簇,并使用基因本体论(GO)等生物本体来注释节点,以获取有关实体在细胞中出现的位置以及它们参与的生物学功能的信息。特别重要的是,GO 按照层次结构组织有关细胞成分和功能的生物学知识。我通过两个网络研究的例子来说明这一点,一个例子是使用基因之间的上位相互作用来识别机制及其部分,另一个例子是使用深度学习来预测表型。正如这两个例子所说明的,当网络研究利用 GO 等层次信息时,结果不仅可以从机制上进行解释,而且还可以提供新的机制知识。本文是主题为“统一生物网络的基本概念:生物学见解和哲学基础”的一部分。