Suppr超能文献

网络解释与解释的方向性。

Network explanations and explanatory directionality.

机构信息

University of Nottingham, Nottingham, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190318. doi: 10.1098/rstb.2019.0318. Epub 2020 Feb 24.

Abstract

Network explanations raise foundational questions about the nature of scientific explanation. The challenge discussed in this article comes from the fact that network explanations are often thought to be non-causal, i.e. they do not describe the dynamical or mechanistic interactions responsible for some behaviour, instead they appeal to topological properties of network models describing the system. These non-causal features are often thought to be valuable precisely because they do not invoke mechanistic or dynamical interactions and provide insights that are not available through causal explanations. Here, I address a central difficulty facing attempts to move away from causal models of explanation; namely, how to recover the directionality of explanation. Within causal models, the directionality of explanation is identified with the direction of causation. This solution is no longer available once we move to non-causal accounts of explanation. I will suggest a solution to this problem that emphasizes the role of conditions of application. In doing so, I will challenge the idea that mathematical dependencies are the key to understand non-causal explanations. The upshot is a conceptual account of explanation that accommodates the possibility of non-causal network explanations. It also provides guidance for how to evaluate such explanations. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'.

摘要

网络解释引发了关于科学解释本质的基本问题。本文讨论的挑战来自这样一个事实,即网络解释通常被认为是非因果的,也就是说,它们没有描述导致某种行为的动力或机械相互作用,而是诉诸于描述系统的网络模型的拓扑性质。这些非因果特征通常被认为是有价值的,正是因为它们不涉及机械或动力相互作用,并提供了通过因果解释无法获得的见解。在这里,我将解决试图摆脱因果解释模型所面临的一个核心难题,即如何恢复解释的方向性。在因果模型中,解释的方向性与因果关系的方向一致。一旦我们转向非因果解释的解释,这个解决方案就不再适用。我将提出一个解决方案来解决这个问题,该方案强调了应用条件的作用。在这样做的过程中,我将挑战数学依赖关系是理解非因果解释的关键这一观点。其结果是一种解释的概念性描述,它包含了非因果网络解释的可能性。它还为如何评估此类解释提供了指导。本文是主题为“统一生物网络的基本概念:生物学见解和哲学基础”的一部分。

相似文献

1
Network explanations and explanatory directionality.网络解释与解释的方向性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190318. doi: 10.1098/rstb.2019.0318. Epub 2020 Feb 24.
3
General theory of topological explanations and explanatory asymmetry.拓扑解释的一般理论与解释的不对称性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190321. doi: 10.1098/rstb.2019.0321. Epub 2020 Feb 24.
4
Causal and non-causal explanations in code biology.代码生物学中的因果和非因果解释。
Biosystems. 2021 Nov;209:104499. doi: 10.1016/j.biosystems.2021.104499. Epub 2021 Aug 3.
5
Systems biology and the integration of mechanistic explanation and mathematical explanation.系统生物学以及机械论解释与数学解释的整合
Stud Hist Philos Biol Biomed Sci. 2013 Dec;44(4 Pt A):477-92. doi: 10.1016/j.shpsc.2013.06.002. Epub 2013 Jul 14.
6
The directionality of distinctively mathematical explanations.独特数学解释的方向性。
Stud Hist Philos Sci. 2017 Jun;63:31-38. doi: 10.1016/j.shpsa.2017.04.005. Epub 2017 May 25.
7
Exploring modularity in biological networks.探索生物网络的模块性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190316. doi: 10.1098/rstb.2019.0316. Epub 2020 Feb 24.
8
Collaborative explanation and biological mechanisms.协同解释与生物学机制。
Stud Hist Philos Sci. 2015 Aug;52:67-78. doi: 10.1016/j.shpsa.2015.03.004. Epub 2015 May 5.

引用本文的文献

1
Physiological Network Is Disrupted in Severe COVID-19.在重症 COVID-19 中生理网络遭到破坏。
Front Physiol. 2022 Mar 10;13:848172. doi: 10.3389/fphys.2022.848172. eCollection 2022.
2
Sex Differences in the Physiological Network of Healthy Young Subjects.健康年轻受试者生理网络中的性别差异。
Front Physiol. 2021 May 11;12:678507. doi: 10.3389/fphys.2021.678507. eCollection 2021.
3
Metabolic Physiological Networks: The Impact of Age.代谢生理网络:年龄的影响
Front Physiol. 2020 Oct 7;11:587994. doi: 10.3389/fphys.2020.587994. eCollection 2020.
5
General theory of topological explanations and explanatory asymmetry.拓扑解释的一般理论与解释的不对称性。
Philos Trans R Soc Lond B Biol Sci. 2020 Apr 13;375(1796):20190321. doi: 10.1098/rstb.2019.0321. Epub 2020 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验