Szewczyk Piotr K, Gradys Arkadiusz, Kim Sung Kyun, Persano Luana, Marzec Mateusz, Kryshtal Aleksandr, Busolo Tommaso, Toncelli Alessandra, Pisignano Dario, Bernasik Andrzej, Kar-Narayan Sohini, Sajkiewicz Paweł, Stachewicz Urszula
International Centre of Electron Microscopy for Materials Science and Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Krakow, Poland.
Polish Academy of Sciences, Institute of Fundamental Technological Research, 02-106 Warszawa, Poland.
ACS Appl Mater Interfaces. 2020 Mar 18;12(11):13575-13583. doi: 10.1021/acsami.0c02578. Epub 2020 Mar 4.
Piezoelectric polymers are promising energy materials for wearable and implantable applications for replacing bulky batteries in small and flexible electronics. Therefore, many research studies are focused on understanding the behavior of polymers at a molecular level and designing new polymer-based generators using polyvinylidene fluoride (PVDF). In this work, we investigated the influence of voltage polarity and ambient relative humidity in electrospinning of PVDF for energy-harvesting applications. A multitechnique approach combining microscopy and spectroscopy was used to study the content of the β-phase and piezoelectric properties of PVDF fibers. We shed new light on β-phase crystallization in electrospun PVDF and showed the enhanced piezoelectric response of the PVDF fiber-based generator produced with the negative voltage polarity at a relative humidity of 60%. Above all, we proved that not only crystallinity but also surface chemistry is crucial for improving piezoelectric performance in PVDF fibers. Controlling relative humidity and voltage polarity increased the d piezoelectric coefficient for PVDF fibers by more than three times and allowed us to generate a power density of 0.6 μW·cm from PVDF membranes. This study showed that the electrospinning technique can be used as a single-step process for obtaining a vast spectrum of PVDF fibers exhibiting different physicochemical properties with β-phase crystallinity reaching up to 74%. The humidity and voltage polarity are critical factors in respect of chemistry of the material on piezoelectricity of PVDF fibers, which establishes a novel route to engineer materials for energy-harvesting and sensing applications.
压电聚合物是用于可穿戴和植入式应用的有前景的能量材料,可在小型柔性电子产品中替代笨重的电池。因此,许多研究致力于在分子水平上理解聚合物的行为,并使用聚偏二氟乙烯(PVDF)设计新型的基于聚合物的发电机。在这项工作中,我们研究了电压极性和环境相对湿度对用于能量收集应用的PVDF电纺丝的影响。采用结合显微镜和光谱学的多技术方法来研究PVDF纤维的β相含量和压电性能。我们揭示了电纺PVDF中β相结晶的新情况,并表明在相对湿度为60%时,用负极性电压制备的基于PVDF纤维的发电机具有增强的压电响应。最重要的是,我们证明了不仅结晶度,而且表面化学对于提高PVDF纤维的压电性能也至关重要。控制相对湿度和电压极性使PVDF纤维的d压电系数增加了三倍多,并使我们能够从PVDF膜产生0.6 μW·cm的功率密度。这项研究表明,电纺丝技术可作为一种单步工艺,用于获得具有不同物理化学性质的多种PVDF纤维,其β相结晶度可达74%。湿度和电压极性是影响PVDF纤维压电性材料化学的关键因素,这为设计用于能量收集和传感应用的材料开辟了一条新途径。