Materials Science and Engineering Program and Texas Materials Institute , The University of Texas at Austin , Austin , Texas 78712 , United States.
LAETA, Engineering Physics Department, FEUP , University of Porto , Porto , Portugal.
J Am Chem Soc. 2018 May 23;140(20):6343-6352. doi: 10.1021/jacs.8b02322. Epub 2018 May 9.
A room-temperature all-solid-state rechargeable battery cell containing a tandem electrolyte consisting of a Li-glass electrolyte in contact with a lithium anode and a plasticizer in contact with a conventional, low cost oxide host cathode was charged to 5 V versus lithium with a charge/discharge cycle life of over 23,000 cycles at a rate of 153 mA·g of active material. A larger positive electrode cell with 329 cycles had a capacity of 585 mAh·g at a cutoff of 2.5 V and a current of 23 mA·g of the active material; the capacity rose with cycle number over the 329 cycles tested during 13 consecutive months. Another cell had a discharge voltage from 4.5 to 3.7 V over 316 cycles at a rate of 46 mA·g of active material. Both the Li-glass electrolyte and the plasticizer contain electric dipoles that respond to the internal electric fields generated during charge by a redistribution of mobile cations in the glass and by extraction of Li from the active cathode host particles. The electric dipoles remain oriented during discharge to retain an internal electric field after a discharge. The plasticizer accommodates to the volume changes in the active cathode particles during charge/discharge cycling and retains during charge the Li extracted from the cathode particles at the plasticizer/cathode-particle interface; return of these Li to the active cathode particles during discharge only involves a displacement back across the plasticizer/cathode interface and transport within the cathode particle. A slow motion at room temperature of the electric dipoles in the Li-glass electrolyte increases with time the electric field across the EDLC of the anode/Li-glass interface to where Li from the glass electrolyte is plated on the anode without being replenished from the cathode, which charges the Li-glass electrolyte negative and consequently the glass side of the Li-glass/plasticizer EDLC. Stripping back the Li to the Li-glass during discharge is enhanced by the negative charge in the Li-glass. Since the Li-glass is not reduced on contact with metallic lithium, no passivating interface layer contributes to a capacity fade; instead, the discharge capacity increases with cycle number as a result of dipole polarization in the Li-glass electrolyte leading to a capacity increase of the Li-glass/plasticizer EDLC. The storage of electric power by both faradaic electrochemical extraction/insertion of Li in the cathode and electrostatic stored energy in the EDLCs provides a safe and fast charge and discharge with a long cycle life and a greater capacity than can be provided by the cathode host extraction/insertion reaction. The cell can be charged to a high voltage versus a lithium anode because of the added charge of the EDLCs.
一种室温全固态可充电电池单元,包含串联电解质,该串联电解质由与锂阳极接触的 Li 玻璃电解质和与传统低成本氧化物主体阴极接触的增塑剂组成,在 153 mA·g 的活性物质的速率下,以 5 V 对锂进行充电/放电循环寿命超过 23,000 次。具有 329 个循环的较大正极电池在截止电压为 2.5 V 和电流为 23 mA·g 的活性物质时具有 585 mAh·g 的容量;在 13 个月的连续测试中,该容量随循环次数的增加而增加。另一电池在 46 mA·g 的活性物质的速率下,在 316 个循环中从 4.5 到 3.7 V 放电。在充电过程中,Li 玻璃电解质和增塑剂中的电偶极子通过玻璃中可移动阳离子的重新分布和从活性阴极主体颗粒中提取 Li 来响应内部电场,电偶极子在放电过程中保持定向以在放电后保留内部电场。在充电/放电循环过程中,增塑剂适应活性阴极颗粒的体积变化,并在充电时保留从阴极颗粒中提取的 Li 在增塑剂/阴极颗粒界面处;在放电过程中,这些 Li 返回活性阴极颗粒仅涉及穿过增塑剂/阴极界面的位移以及阴极颗粒内的传输。Li 玻璃电解质中电偶极子在室温下的缓慢运动随着时间的推移增加了阳极/Li 玻璃界面处 EDLC 的电场,从而使来自玻璃电解质的 Li 在没有从阴极补充的情况下镀在阳极上,这使 Li 玻璃电解质带负电,从而使 Li 玻璃/增塑剂 EDLC 的玻璃侧带负电。在放电过程中,Li 玻璃中的负电荷增强了将 Li 剥离回 Li 玻璃的过程。由于 Li 玻璃与金属锂接触时不会被还原,因此没有钝化界面层导致容量衰减;相反,由于 Li 玻璃电解质中的偶极子极化导致 Li 玻璃/增塑剂 EDLC 的容量增加,因此放电容量随循环次数的增加而增加。通过在阴极中进行法拉第电化学提取/插入 Li 和在 EDLC 中存储静电荷,可以提供安全快速的充电和放电,具有长循环寿命和比阴极主体提取/插入反应更大的容量。由于 EDLCs 的附加电荷,电池可以以高电压对锂阳极充电。