Aalto University, School of Science, New Energy Technologies Group, P.O. Box 15100, Aalto, Espoo, FI-00076, Finland.
J Environ Manage. 2020 Apr 15;260:110090. doi: 10.1016/j.jenvman.2020.110090. Epub 2020 Jan 21.
This paper presents deep decarbonization strategies for city-level energy systems. Helsinki city is used as a case in the analysis. The strategies are mainly based on extensive electrification employing renewable electricity, storage, and sector-coupling strategies. We perform energy, economic, and resilience analyses for the different cases. An energy balance model with 1-h resolution is used to optimize the energy system on macro-scale, while a MILP-algorithm is used for micro-level optimization of operation of individual plants against different criteria. The results indicate that a zero-carbon energy system is feasible by 2050, but it would also require coupling to the exogenous energy system (national electricity market) to balance mismatches. Power-to-heat coupling, or storage alone would not be adequate. As an example of system dynamics limitations, with a wind power capacity of 1.5 GW corresponding to 56% of the annual electricity demand in Helsinki, 90% of the wind electricity can be used locally in the different sectors, but the rest needs coupling to the exogenous market due to mismatch and plant limitations. The decarbonization strategies with increasing variable renewable energy production generally improve the resilience of the energy system, but with some concerns to adequacy of peak production and electricity dependency of heating.
本文提出了城市能源系统深度脱碳策略。以芬兰赫尔辛基市为例进行了分析。这些策略主要基于广泛的电力化,利用可再生电力、存储和部门耦合策略。我们对不同情况进行了能源、经济和弹性分析。使用具有 1 小时分辨率的能源平衡模型对宏观尺度上的能源系统进行优化,同时使用 MILP 算法根据不同标准对单个工厂的运行进行微观优化。结果表明,到 2050 年,实现零碳能源系统是可行的,但也需要与外部能源系统(国家电力市场)耦合以平衡不匹配。仅靠电力到热能的耦合或存储是不够的。作为系统动态限制的一个例子,在赫尔辛基,风电装机容量为 15 亿千瓦,相当于年电力需求的 56%,在不同部门中,90%的风电可以在当地使用,但由于不匹配和工厂限制,其余部分需要耦合到外部市场。随着可变可再生能源产量的增加,脱碳策略通常会提高能源系统的弹性,但对峰值产量的充足性和供热对电力的依赖存在一些担忧。