Suppr超能文献

用于脑机接口的高频稳态视觉诱发电位的识别

[Recognition of high-frequency steady-state visual evoked potential for brain-computer interface].

作者信息

Luo Ruixin, Dou Xinyi, Xiao Xiaolin, Wu Qiaoyi, Xu Minpeng, Ming Dong

机构信息

School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, P. R. China.

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Aug 25;40(4):683-691. doi: 10.7507/1001-5515.202302034.

Abstract

Coding with high-frequency stimuli could alleviate the visual fatigue of users generated by the brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP). It would improve the comfort and safety of the system and has promising applications. However, most of the current advanced SSVEP decoding algorithms were compared and verified on low-frequency SSVEP datasets, and their recognition performance on high-frequency SSVEPs was still unknown. To address the aforementioned issue, electroencephalogram (EEG) data from 20 subjects were collected utilizing a high-frequency SSVEP paradigm. Then, the state-of-the-art SSVEP algorithms were compared, including 2 canonical correlation analysis algorithms, 3 task-related component analysis algorithms, and 1 task discriminant component analysis algorithm. The results indicated that they all could effectively decode high-frequency SSVEPs. Besides, there were differences in the classification performance and algorithms' speed under different conditions. This paper provides a basis for the selection of algorithms for high-frequency SSVEP-BCI, demonstrating its potential utility in developing user-friendly BCI.

摘要

基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)会使用户产生视觉疲劳,而采用高频刺激进行编码可缓解这种疲劳。这将提高系统的舒适性和安全性,并具有广阔的应用前景。然而,当前大多数先进的SSVEP解码算法都是在低频SSVEP数据集上进行比较和验证的,它们在高频SSVEP上的识别性能仍不明确。为解决上述问题,利用高频SSVEP范式收集了20名受试者的脑电图(EEG)数据。然后,对当前最先进的SSVEP算法进行了比较,包括2种典型相关分析算法、3种任务相关成分分析算法和1种任务判别成分分析算法。结果表明,它们都能有效地解码高频SSVEP。此外,在不同条件下,分类性能和算法速度存在差异。本文为高频SSVEP-BCI算法的选择提供了依据,证明了其在开发用户友好型BCI方面的潜在效用。

相似文献

5
[A review of researches on decoding algorithms of steady-state visual evoked potentials].[稳态视觉诱发电位解码算法的研究综述]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Apr 25;39(2):416-425. doi: 10.7507/1001-5515.202111066.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验