School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America.
Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America.
PLoS Genet. 2020 Feb 24;16(2):e1008606. doi: 10.1371/journal.pgen.1008606. eCollection 2020 Feb.
Over long evolutionary timescales, major changes to the copy number, function, and genomic organization of genes occur, however, our understanding of the individual mutational events responsible for these changes is lacking. In this report, we study the genetic basis of adaptation of two strains of C. elegans to laboratory food sources using competition experiments on a panel of 89 recombinant inbred lines (RIL). Unexpectedly, we identified a single RIL with higher relative fitness than either of the parental strains. This strain also displayed a novel behavioral phenotype, resulting in higher propensity to explore bacterial lawns. Using bulk-segregant analysis and short-read resequencing of this RIL, we mapped the change in exploration behavior to a spontaneous, complex rearrangement of the rcan-1 gene that occurred during construction of the RIL panel. We resolved this rearrangement into five unique tandem inversion/duplications using Oxford Nanopore long-read sequencing. rcan-1 encodes an ortholog to human RCAN1/DSCR1 calcipressin gene, which has been implicated as a causal gene for Down syndrome. The genomic rearrangement in rcan-1 creates two complete and two truncated versions of the rcan-1 coding region, with a variety of modified 5' and 3' non-coding regions. While most copy-number variations (CNVs) are thought to act by increasing expression of duplicated genes, these changes to rcan-1 ultimately result in the reduction of its whole-body expression due to changes in the upstream regions. By backcrossing this rearrangement into a common genetic background to create a near isogenic line (NIL), we demonstrate that both the competitive advantage and exploration behavioral changes are linked to this complex genetic variant. This NIL strain does not phenocopy a strain containing an rcan-1 loss-of-function allele, which suggests that the residual expression of rcan-1 is necessary for its fitness effects. Our results demonstrate how colonization of new environments, such as those encountered in the laboratory, can create evolutionary pressure to modify gene function. This evolutionary mismatch can be resolved by an unexpectedly complex genetic change that simultaneously duplicates and diversifies a gene into two uniquely regulated genes. Our work shows how complex rearrangements can act to modify gene expression in ways besides increased gene dosage.
在漫长的进化时间尺度上,基因的拷贝数、功能和基因组组织发生了重大变化,然而,我们对导致这些变化的个别突变事件的理解还很缺乏。在本报告中,我们使用 89 个重组近交系 (RIL) 面板上的竞争实验,研究了两种秀丽隐杆线虫适应实验室食物来源的遗传基础。出乎意料的是,我们鉴定出一个相对适合度高于亲代菌株的 RIL。该菌株还表现出一种新颖的行为表型,导致更高的细菌草皮探索倾向。使用该 RIL 的批量分离分析和短读重测序,我们将探索行为的变化映射到 rcan-1 基因的自发、复杂重排上,该重排发生在 RIL 面板构建过程中。我们使用牛津纳米孔长读测序将此重排解析为五个独特的串联倒位/重复。rcan-1 编码人类 RCAN1/DSCR1 钙调蛋白基因的同源物,该基因已被认为是唐氏综合征的一个因果基因。rcan-1 基因内的基因组重排产生了 rcan-1 编码区的两个完整和两个截断版本,以及各种修饰的 5'和 3'非编码区。虽然大多数拷贝数变异 (CNV) 被认为通过增加重复基因的表达而起作用,但 rcan-1 的这些变化最终导致其全身表达减少,原因是上游区域发生了变化。通过将此重排回交到一个常见的遗传背景中以创建近等基因系 (NIL),我们证明了竞争优势和探索行为的变化都与这种复杂的遗传变体有关。这个 NIL 菌株与含有 rcan-1 功能缺失等位基因的菌株没有表型相似性,这表明 rcan-1 的残留表达对于其适应度效应是必要的。我们的结果表明,新环境的殖民化,如在实验室中遇到的环境,如何创造修改基因功能的进化压力。这种进化不匹配可以通过一种出乎意料的复杂遗传变化来解决,这种变化同时将一个基因复制并多样化成两个具有独特调控的基因。我们的工作展示了复杂的重排如何以除了增加基因剂量以外的方式来调节基因表达。