Suppr超能文献

定量蛋白质组学分析揭示了 N-糖基化在稻瘟病菌发育和发病机制中的内质网质量控制系统中的重要作用。

Quantitative proteomics analysis reveals important roles of N-glycosylation on ER quality control system for development and pathogenesis in Magnaporthe oryzae.

机构信息

The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

出版信息

PLoS Pathog. 2020 Feb 24;16(2):e1008355. doi: 10.1371/journal.ppat.1008355. eCollection 2020 Feb.

Abstract

Genetic studies have shown essential functions of N-glycosylation during infection of the plant pathogenic fungi, however, systematic roles of N-glycosylation in fungi is still largely unknown. Biological analysis demonstrated N-glycosylated proteins were widely present at different development stages of Magnaporthe oryzae and especially increased in the appressorium and invasive hyphae. A large-scale quantitative proteomics analysis was then performed to explore the roles of N-glycosylation in M. oryzae. A total of 559 N-glycosites from 355 proteins were identified and quantified at different developmental stages. Functional classification to the N-glycosylated proteins revealed N-glycosylation can coordinate different cellular processes for mycelial growth, conidium formation, and appressorium formation. N-glycosylation can also modify key components in N-glycosylation, O-glycosylation and GPI anchor pathways, indicating intimate crosstalk between these pathways. Interestingly, we found nearly all key components of the endoplasmic reticulum quality control (ERQC) system were highly N-glycosylated in conidium and appressorium. Phenotypic analyses to the gene deletion mutants revealed four ERQC components, Gls1, Gls2, GTB1 and Cnx1, are important for mycelial growth, conidiation, and invasive hyphal growth in host cells. Subsequently, we identified the Gls1 N-glycosite N497 was important for invasive hyphal growth and partially required for conidiation, but didn't affect colony growth. Mutation of N497 resulted in reduction of Gls1 in protein level, and localization from ER into the vacuole, suggesting N497 is important for protein stability of Gls1. Our study showed a snapshot of the N-glycosylation landscape in plant pathogenic fungi, indicating functions of this modification in cellular processes, developments and pathogenesis.

摘要

遗传研究表明,N-糖基化在植物病原真菌的感染过程中具有重要功能,然而,N-糖基化在真菌中的系统作用在很大程度上仍然未知。生物分析表明,N-糖基化蛋白广泛存在于稻瘟病菌的不同发育阶段,特别是在附着胞和侵染菌丝中增加。然后进行了大规模的定量蛋白质组学分析,以探讨 N-糖基化在稻瘟病菌中的作用。在不同的发育阶段共鉴定和定量了 355 种蛋白质中的 559 个 N-糖基化位点。对 N-糖基化蛋白的功能分类表明,N-糖基化可以协调菌丝生长、分生孢子形成和附着胞形成等不同的细胞过程。N-糖基化还可以修饰 N-糖基化、O-糖基化和 GPI 锚定途径中的关键组成部分,表明这些途径之间存在密切的相互作用。有趣的是,我们发现,在分生孢子和附着胞中,内质网质量控制(ERQC)系统的几乎所有关键组成部分都高度 N-糖基化。对基因缺失突变体的表型分析表明,ERQC 系统的四个关键组成部分 Gls1、Gls2、GTB1 和 Cnx1 对菌丝生长、分生孢子形成和侵染菌丝在宿主细胞中的生长都很重要。随后,我们确定了 Gls1 的 N-糖基化位点 N497 对侵染菌丝的生长很重要,部分对分生孢子的形成是必需的,但不影响菌落的生长。N497 的突变导致 Gls1 的蛋白水平降低,并且从 ER 定位到液泡中,这表明 N497 对 Gls1 的蛋白稳定性很重要。我们的研究展示了植物病原真菌中 N-糖基化图谱的一个快照,表明了这种修饰在细胞过程、发育和发病机制中的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d06e/7058352/3449bf20ab90/ppat.1008355.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验