Suppr超能文献

应用化学计量学方法和定量结构-活性关系模型,从生态毒理学数据集中支持农药风险评估。

Application of chemometric methods and QSAR models to support pesticide risk assessment starting from ecotoxicological datasets.

机构信息

ICPS, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Milan, Italy.

ICPS, International Centre for Pesticides and Health Risk Prevention, ASST Fatebenefratelli-Sacco, Milan, Italy; Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy.

出版信息

Water Res. 2020 May 1;174:115583. doi: 10.1016/j.watres.2020.115583. Epub 2020 Feb 6.

Abstract

The EFSA 'Guidance on tiered risk assessment for edge-of-field surface waters' underscores the importance of in silico models to support the pesticide risk assessment. The aim of this work was to use in silico models starting from an available, structured and harmonized pesticide dataset that was developed for different purposes, in order to stimulate the use of QSAR models for risk assessment. The present work focuses on the development of a set of in silico models, developed to predict the aquatic toxicity of heterogeneous pesticides with incomplete/unknown toxic behavior in the water compartment. The generated models have good fitting performances (R: 0.75-0.99), they are internally robust (Qloo: 0.66-0.98) and can handle up to 30% of perturbation of the training set (Q lmo: 0.64-0.98). The absence of chance correlation was guaranteed by low values of R calculated on scrambled responses (R Y: 0.11-0.38). Different statistical parameters were used to quantify the external predictivity of the models (CCC: 0.73-0.91, Q ext-Fn: 0.53-0.96). The results indicate that all the best models are predictive when applied to chemicals not involved in the models development. In addition, all models have similar accuracy both in fitting and in prediction and this represents a good degree of generalization. These models may be useful to support the risk assessment procedure when experimental data for key species are missing or to create prioritization lists for the general a priori assessment of the potential toxicity of existing and new pesticides which fall in the applicability domain.

摘要

EFSA《田间边界地表水的分层风险评估指南》强调了计算模型在支持农药风险评估方面的重要性。本工作旨在使用计算模型,从为不同目的开发的可用、结构化和协调的农药数据集开始,以刺激用于风险评估的定量构效关系模型的使用。本工作重点开发了一组计算模型,旨在预测水相中有不完全/未知毒性行为的异质农药的水生毒性。生成的模型具有良好的拟合性能(R:0.75-0.99),内部稳健(Q loo:0.66-0.98),并且可以处理高达 30%的训练集的扰动(Q lmo:0.64-0.98)。通过计算响应的低值 R 来保证不存在偶然相关性(R Y:0.11-0.38)。使用不同的统计参数来量化模型的外部预测能力(CCC:0.73-0.91,Q ext-Fn:0.53-0.96)。结果表明,当应用于未参与模型开发的化学品时,所有最佳模型都是可预测的。此外,所有模型在拟合和预测方面都具有相似的准确性,这代表了很好的泛化程度。当关键物种的实验数据缺失时,这些模型可能有助于支持风险评估程序,或者在适用性域内为现有和新农药的潜在毒性的一般先验评估创建优先级列表。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验